

Biacore S200

Instrument Handbook

基本操作編

目 次

1. セットアップ	1
1-1. 電源およびソフトウェアの起動	1
1-1-1. 電源の立ち上げ	1
1-1-2. ランニング緩衝液、超純水のセット	1
1-1-3. コントロールソフトウェアの起動	4
1-2. システムの初期化	5
1-2-1. センサーチップの挿入	5
1-2-2. ランニング緩衝液による平衡化	9
1-2-3. 温度設定	
1-2-4. 試料のセットと取り出し	11
2. 基本操作	14
2-1. マニュアル測定の実行方法	14
2-1-1. 試料の添加	17
2-1-2. レポートポイントの追加	
2-1-3. 測定の終了	
2-2. ファイルの保存	
2-3. データの印刷	22
3. 固定化	23
3-1. アミンカップリング法	25
3-1-1. リガンド希釈液の pH 選択	27
3-1-2. 基本プロトコールでの固定化	
3-1-3. 固定化量を調節して固定化	
4. マニュアル測定による相互作用の条件検討	
5. 相互作用測定	54
5-1. 反応速度定数・解離定数の算出	
5-2. テンプレートメソッドの実行	
5-3. 解析前のデータ確認	71

5-3. Kinetics 解析	
5-4. Affinity 解析	
6. メソッド詳細	109
6-1. テンプレートメソッドの呼び出し	
6-2. メソッドの編集	
6-3. メソッドの実行	
7. メンテナンス	132
7-1. システムの洗浄	
7-1-1. Desorb	
7-1-2. Desorb and Sanitize	
7-1-3. Superclean	
7-1-4. Empty Buffer Tubing	
7-1-5. Wash Buffer Tubing	
7-2. シグナルの校正(Normalize)	
7-3. システムチェック	
8. 実験の終了	148
8-1. スタンバイ状態での放置	
8-2. 電源の落とし方	
8-3. センサーチップの保存	

1. セットアップ

1-1. 電源およびソフトウェアの起動

1-1-1. 電源の立ち上げ

テーブルタップの電源 → プリンター → モニター画面 → システム本体(裏面の電源コー ド上) → コンピューター の順番に電源を入れます。Windows のバージョンにより、パスワ ードの入力が必要な場合があります。

注)装置本体の電源を入れると、本体のフロント右上にあるすべてのインジケーター (LED ランプ)が数秒間点灯し、リセットされて消えます。その後 ready のインジケーターが点灯し、 temperature のインジケーターは点滅します。

1-1-2. ランニング緩衝液、超純水のセット

本体に向かって、左側トレイにランニング緩衝液ボトルをセットし、チューブ A を挿入しま す。廃液ボトル後ろの扉を開けて、ペリスターポンプのロックをします。

右側トレイには、超純水ボトルおよび廃液ボトルをセットして、対応するチューブを挿入し ます。(超純水は4日に1回程度の頻度で、ボトルごと交換してください。) 廃液ボトルが空であるか、測定前に必ず確認してください。

左側;ランニング緩衝液ボトルセット

右側;廃液ボトル・超純水ボトルセット

補足 1-2. チューブの 本体左側	記置
チューブ A,B,C,D には、タ	クがついているので確認します。
チューブA	ランニング緩衝液ボトルに入れます。
チューブ B,C,D	必要に応じて複数のランニング緩衝液をセットできます。
本体右側	
超純水チューブ	超純水を入れた 500 ml ボトルに入れます。
廃液チューブ(2 本)	廃液ボトルキャップに接続します。

補足 1-3. ラン	ニング緩衝液の種類
ランニング緩衝液	をとして、弊社から HBS 緩衝液および PBS 緩衝液を販売しています。
HBS-EP+ 10X	(1000 ml, BR100669)
0.1 M HEPES, 1.5 M	I NaCl, 30 mM EDTA, 0.5 % v/v Surfactant P 20
	⇒超純水で 10 倍希釈
	0.01 M HEPES, 0.15 M NaCl, 3 mM EDTA, 0.05 % Surfactant P 20, pH7.4
HBS-P+ 10X	(1000 ml, BR100671)
0.1 M HEPES, 1.5 M	NaCl, 0.5 % v/v Surfactant P 20
	→超純水で 10 倍希釈
	0.01 M HEPES, 0.15 M NaCl, 0.05 % Surfactant P 20, pH7.4
HBS-N 10X	(1000 ml, BR100670)
0.1 M HEPES, 1.5 N	I NaCl
	→超純水で 10 倍希釈
	0.01 M HEPES, 0.15 M NaCl, pH7.4
PBS 10X	(1000 ml, BR100672)
0.1 M phosphate B	uffer, 27 mM KCl, 1.37 M NaCl
	⇒超純水で 10 倍希釈
	0.01 M phosphate Buffer, 2.7 mM KCl, 0.137 M NaCl, pH7.4
PBS-P+ 10X	(1000 ml, 28995084)
0.1 M phosphate B	uffer, 27 mM KCl, 1.37 M NaCl, 0.5 % v/v Surfactant P 20
	⇒超純水で 10 倍希釈
	0.01 M phosphate Buffer, 2.7 mM KCl, 0.137 M NaCl, 0.05 % Surfactant P 20, pH7.4
・相互作用が確認	2できる緩衝液組成を使用してください。
・各自で調製する	5場合には、0.22μm フィルターでろ過してください。
・界面活性剤は、	相互作用に影響をしないのであれば添加することをおすすめします。流路
の汚れ、気泡の発	€生を抑制できます。使用時には、非イオン性の界面活性剤を臨界ミセル濃│
度以上で添加して	こください。

Solution	Concentration	Compatibility	
Acetonitrile	50%	Short term	
Dimethyl formamide (DMF)	50%	Short term	
Dimethyl sulfoxide (DMSO)	50% 10%	Short term Long term	・Short term: 数分間の短い添加
Ethanol	70% 10%	Short term Long term	• Long term :
Ethylene glycol	100%	Short term	ランニング緩衝液に添加可能
Formic acid	70%	Short term	
Formamide	40%	Long term	

・有機溶媒使用時には、以下の化学耐性表に従って使用してください。

1-1-3. コントロールソフトウェアの起動

初期画面中の左下の Start から、All programs → Biacore → Biacore S200 Control Software のアイコンをクリックします。または、デスクトップ上の Biacore S200 Control Software のア イコンをクリックします。

スタートスク	リーン	/画面が	開き	ま	す	•
--------	-----	------	----	---	---	---

Biacore S200 Control Software			×
EFile View Run Tools Help			
Templates Tools			
Tomptetoo 10000			
Biacore Templates	My Templates		
Sank template	Name	Type Modified	
Surface preparation			
Assay development			
Kinetics/affinity			
		追加テンプレー	· -
助仔テンフレート 日本			
Open			Browse Open
Halp			
Theip			
Status har			
装置 サンプルコンパートメン	ト温度たどを表示		
<u> </u>			
Online - COM1 Current temp: 24.87 °C			
Sample compartment temperature - current: 25 °C set: 25 °C No sensor chip	inserted		

画面左上のタブをクリックして、画面の切り替えができます。

Template 画面では、メソッドテンプレートを呼び出せます。

Tools 画面では、各種メンテナンスやサービスコマンドを呼び出せます。

1-2. システムの初期化

1-2-1. センサーチップの挿入

コントロールソフトウェアを起動すると Insert Chip ダイアログが表示され、同時に本体右側 のセンサーチップポートが自動で開きます。

Insert Chip	The second se
New chip	
New chip	
Chip type: Maintenance	
Chie id. 150001 0405-1005052	
Chip lot no: (optional)	
	0 0
Help Dock Chip Cancel	X
	\downarrow
Insert Chip	
New chip Reuse chip	
New chip	Diagona Sensor Chip
Chip type: CM5	CM5
Chip la: CM3 CM3	Series 5
Chip lot no: CM5	
CM7 Custom	
HPA L1	Series S センサーチップ CM5
NTA Protein A	
SA Maintenance	
Maintenance	

新品のセンサーチップを使用する際は、ONew Chip に、再利用のセンサーチップの場合は、 OReuse Chip にチェックを入れ、使用する Chip type を選択します。(再利用のセンサーチッ プを使用する場合は、補足 1-5 を参照してください。)

	\checkmark	
Insert Chip		×
New chip	Reuse chip	
New chip		
Chip type: CM5		•
Chip <u>i</u> d: 1509	01-0405:1965952	
Chip lot no: (option	nal) 10119959	
Help	Dock Chip Cancel	

Chip id は、日付-時間:システムシリアルナンバーが自動入力されます。必要に応じて変更可 能です。Chip lot no: (optional) を入力します。Chip lot は、センサーチップケースまたはパ ウチに記載しています。

センサーチップを印字面の矢印の方向で、センサーチップポートに挿入します。センサーチ ップポートを手で押して閉めます。(内部のガラス基板が付着しているシートが、外部のケー スにしっかり入っていることを確認してから装置にセットしてください。) Insert Chip ダイアログの Dock Chip をクリックします。

Dock が完了して自動的に Standby flow 状態になります。

Standbyflow とは、セットしたランニング緩衝液(チューブ A)を低流速で流し続けるモードです。最長 7 日間継続します。(バッファー必要量;65 ml/24 時間)

補足 1-4. センサーチップ挿入時の注意事項

・冷蔵庫に保存しているセンサーチップは、室温に戻した後に開封してください。

・センサーチップ内のプラスチックシートがセンサーチップのカバーにしっかり収まってい ることを確認してから挿入してください。

・ガラス基板に埃や粒子が付着していないことを確認して Dock してください。

・センサーチップポートを閉じてしまった後、センサーチップを取り出す必要がある場合は、

一旦 Insert Chip のダイアログを Cancel します。Tools タブの System Setup Tools→Eject Chip を 選択して、Eject Chip を実行してください。

Insert Chip ダイアログを閉じてしまった場合は、Tools タブの System Setup Tools→Insert Chip を選択すれば、再度ダイアログが表示されます。

	したセンサーラ	チップを使用⁻	する場合は、挿入日	時、〇Reuse Chip にチェックを入れ
次のダイ	イアログが表示	示されます。		
		Insert Chip		
		New chip	Reuse chip	
		New chip		
		Chip type: Maint	enance	
		Chip <u>i</u> d: 15090	01-0405:1965952	
		Chip lot no: (option	al)	
		Help	Dock (Chip Cancel
		<u> → → / − + / </u>		
euse: C.	そのセンリー	- ナッフに対応	心した 10 を迭折し	、Details…をクリックすると、回れ
歴が表え	示されます。			
hip Propertie	25			
This is a		a	hip lot no:	First dock date:
50721-0149	1965952			7/21/2015
27110 10: 150721-0149: Chip type:	1965952	IF	C type:	7/21/2015
Chip (d: 150721-0149: Chip type: CM5	1965952	IF IFO	С type: С105	7/21/2015
50721-0149: Chip type: M5 Flow cell	1965952 Immobilization date	IF IF0 Final Response [RU]	C type: C105 Ligand	7/21/2015 Result file
Flow cell	1965952 Immobilization date	IF IFI Final Response [RU]	C type: C105 Ligand	7/21/2015 Result file
File File 50721-0149: File Chip type: File Flow cell Fc=1 Fc=2 Fc=3	1965952 Immobilization date	IF IFI Final Response [RU]	C type: C105 Ligand	7/21/2015 Result file
Film Id: 150721-0149: 2hip type: XM5 Flow cell Fc=1 Fc=2 Fc=3 Fc=4	1965952 Immobilization date 5/7/2008	IF IFI Final Response [RU] 353.2	C type: C105 Ligand antibody	7/21/2015
Fibre Cell Figure 2 Fibre Cell Figure 2 Fibre Cell Figure 2 Figure 2 F	1965952 Immobilization date 5/7/2008	IF IFI Final Response [RU] 353.2	C type: C105	7/21/2015 Result file C:\Bia Users\T100Manual\CSK\immobilization of antibody.blr
File (1) 50721-0149: 50721-0149: Chip type: M5 Flow cell Fc=1 Fc=2 Fc=3 Fc=4	1965952 Immobilization date 5/7/2008	IF IFI Final Response [RU] 353.2	C type: C105	7/21/2015 Result file C:\Bia Users\T100Manual\CSK\immobilization of antibody.blr
Fibre Cell From Cell	1965952 Immobilization date 5/7/2008	IF IFI IFI IFI IFI IFI IFI IFI	C type: C105	7/21/2015 Result file C:\Bia Users\T100Manual\CSK\immobilization of antibody.blr
Filow cell Flow cell Fc=1 Fc=2 Fc=3 Fc=4	1965952 Immobilization date 5/7/2008	IF IFI Final Response [RU] 353.2	C type: C105	7/21/2015 Result file C:\Bia Users\T100Manual\CSK\immobilization of antibody.blr

センサーチップを取り出して保存する場合は、センサーチップカバーに id を書き込むと、次回使用する際に id を選択しやすくなります。

なお、固定化済みセンサーチップを再利用する際に、New chip として Dock すると、前回までの固定化履歴が Chip Properties に登録されず、測定データの解析時に解析ソフトウェアにリガンド情報が反映されません。このため、固定化した表面を再度測定に使用する場合には、 Reuse chip で該当するチップ id を選択して Dock してください。 Γ

補足 1-6. センサーチップの種類			
各センサーチップの詳細は、弊社 Web カタロ	ログ等をご参照く	ださい。	
必ず Series S タイプを使用してください。			
カルボキシル基タイプ(タンパク質、ペプチ	ド、化合物など	の固定化)	
Series S Sensor Chip CM5	1枚	29104988	
Series S Sensor Chip CM5	3枚	BR100530	
Series S Sensor Chip CM5	10 枚	29149603	
Series S Sensor Chip CM4	1枚	29104989	
Series S Sensor Chip CM4	3枚	BR100534	
Series S Sensor Chip CM3	1枚	29104990	
Series S Sensor Chip CM3	3枚	BR100536	
Series S Sensor Chip C1	1枚	29104944	
Series S Sensor Chip C1	3枚	BR100535	
Series S Sensor Chip CM7	1枚	28953828	
Series S Sensor Chip CM7	3枚	29147020	
ストレプトアビジンタイプ(ビオチン標識の	DNA やペプチト	などの固定化)	
Series S Sensor Chip SA	1枚	29104992	
Biotin CAPture Kit, Series S	1箱	28920234	
疎水基タイプ(リン脂質、糖脂質、膜タンパ	ク質などの固定	化)	
Series S Sensor Chip HPA	1枚	29104994	
Series S Sensor Chip L1	1枚	29104993	
金属キレートタイプ(His-tag タンパク質の固	国定化)		
Series S Sensor Chip NTA	1枚	28994951	
Series S Sensor Chip NTA	3枚	BR100532	
Protein A タイプ(human antibody IgG1, IgG2, Ig	gG4, Fc-tag タン	パク質の固定化)	
Series S Sensor Chip Protein A	1枚	29127555	
Series S Sensor Chip Protein A	3枚	29127556	

1-2-2. ランニング緩衝液による平衡化

スタートスクリーンの Tools 画面の System Setup Tools の Prime を選択します。(複数回実施したい場合には、MultiPrime を選択します。最大 4 回、連続で Prime できます。)

520	Biac	ore S200	Control	Software		
÷	File	View	Run	Tools	Help	
Ŧ		. 7	L S	- 100	â	
•	Templ	ates	Tools			
	Ma	in Too	ls			
	Sy	stern S	etup T	ools		
	E	Eject Cl	nip			-
	I	nsert C	hip			
		Prime				T
		MultiPri	ime			
			1			

ランニング緩衝液および廃液入れを確認後、Start をクリックします。

Prime			×
Place buffer on the left hand the Place water on the right hand	tray and insert tu I tray and insert t	be A. he water inlet tube.	
	< <u>B</u> ack	<u>S</u> tart	Close
	\downarrow		

Prime がスタートし	ノま	す。	<i>.</i>
--------------	----	----	----------

Prime			
Priming, please wait.			
Time left: 00:06	:46		
	\checkmark		
Prime			×
The Prime procedure is compl	leted.		
	< <u>B</u> ack	Next >	<u>C</u> lose

Close をクリックしてください。

Prime 終了後は、自動的に Standby flow 状態になります。

補足 1-7. 実験途中でのランニング緩衝液の交換

Prime は、ポンプやマイクロ流路系、オートサンプラー等をランニング緩衝液で洗浄、置換する操作です。実験の途中でランニング緩衝液を変更する場合も、必ず実行してください。

1-2-3. 温度設定

測定温度 (Analysis temperature) およびサンプルコンパートメントの温度をそれぞれ設定します。

スタートスクリーンの Tools 画面の System Setup Tools の Set Temperature を選択します。

520	Biacore S200 Control Software	
8	File View Run Tools He	lp
	🖻 🗟 🖓 🌆 🛛 🖓 👘	
	Templates Tools	
	Main Tools	
	System Setup Tools	
	Eject Chip	
	Insert Chip	
	Prime	
	MultiPrime	
	Normalize	
	Eject Rack	
	Rack Illumination On	
	Rack Illumination Off	
	Set Temperature	
	\downarrow	
Set Tempe	rature	X
Analysis <u>t</u> e	emperature:	25 (°C)
Sample co	25 (° C)	
<u>H</u> elp	ОК	Cancel

4~45℃の範囲で設定して、**OK**をクリックします。

(測定温度は室温-20℃以内、サンプルコンパートメント温度は室温-15℃以内で設定可能)

補足 1-8. 設定温度と実際の温度

測定は設定温度で安定した後に実施してください。

設定温度に達していない場合は、画面下の Status bar 中の温度表示が赤の点滅、本体インジケ ーターの temperature ランプが橙色に点滅します。設定温度で安定した場合には、画面下の温 度表示が黒、インジケーターの temperature ランプは点灯に変わります。

温度が完全に安定するには、ある程度時間を要します。測定温度が室温(25℃)と大きく異なる場合は、測定を始める前に、あらかじめ設定してください。

1-2-4. 試料のセットと取り出し

すべての試料はラックトレイにセットし、システム内に挿入します。サンプルコンパートメント内に入っているラックトレイを取り出すには、Toolbarの **Eject Rack** アイコン ()をクリックします。速やかにシステム本体前面のラックトレイポートが開き、ラックトレイが出てきます。

ラックトレイ設定箇所下の円形のボタンを押すとロックが外れ、ラックトレイを引き出すこ とが出来ます。

Eject Rack Tray	—
Rack Tray Ejecter Click OK to return the ra compartment.	ed ack tray to the sample
Help	ОК
Time to auto close: 54	

同時に、画面上に Eject Rack Tray ダイアログが表示されます。

ラックトレイポートは 60 秒で自動的に閉まります。すぐに閉めたい場合は OK をクリックしてください。

なお、扉の自動開閉時間は、Toolbar の Tools→**Preferences** の **Rack** タブで 30、60、90 秒から 指定できます。

Biacore[®]S200 日本語取扱説明書

2. 基本操作

測定モードには、2 つのモードがあります。測定モードを起動する際には、スタートスクリーンの Templates のメソッドテンプレートまたはアイコン をクリックします。

See Biaco	ore S200	Control	Software	
E File	View	Run	Tools	Help
Templ	ates	III ↓ ≯ Tools		

メソッド測定モード

Template にある、目的に添う測定メソッドテンプレートを使用して測定します。

🧷 Manual run モード

画面上のアイコンを使い測定をおこないながら操作するマニュアルモードです。 簡単な確認試験など、数回の添加で完了する試験を行う場合に有効です。 ただし、測定結果は解析できません。

ここでは、Manual run について説明します。

2-1. マニュアル測定の実行方法

スタートスクリーンのアイコン 🧷 をクリックします。

🔤 Manual Run	×
Flow	Reagent Rack 1 • 4 0 0 0 1000000000000000000000000000000000000
Flow path Detection in flow cell(6): 1.2.3.4 Flow path 1 Flow path 2 Flow path 2 Flow path 3 Flow path 4 Flow path 4	Efference subtraction: 11-2 none ▼ 13-4 none ▼ h 1-2:3-4 2-1,4-3 ▼
Help Eject Rack	

流速(**Flow rate**)を入力します。流速は、1~100 µl/min で設定可能です。

検出モード (Flow path)、Rack の種類を選択します。ラックがセットされていない場合、Start をクリックしてもエラーメッセージが表示され先に進めません。測定開始後にサンプルをセ ットする場合でも、ラックを挿入してください。ウインドウ左下の Eject Rack でラックの出 し入れができます。

Biacore[®]S200 日本語取扱説明書

Start をクリックします。

補足 2-1. 試料必要量

試料必要量は、流速 (μl/min) と添加時間 (s) から計算される試料添加量 (μl) に、流路の共 洗い分 28μlを加算した量が必要です。平底のバイアルを使用する場合、特殊な添加モードを 使用する場合は、必要試料量が異なります。測定開始後にサンプルをセットできるので、添 加ダイアログに表示される必要試料量を確認後、試料の調製をし、セットすると間違いがあ りません。

ファイルの保存先を指定します。C: \Bia Users\(自分のフォルダ)に移動後、ファイル名 を入力して Save をクリックします。

センサーグラムが表示され、測定が開始します。

画面左上のアイコンでコマンドを指定します。

Biacore S200 Control Software - [manual run.blr]									-	
🗄 🔛 File Edit View Comm	ands Run	Tools Help									- 🕫 🗙
📙 🖻 🖓 🔤 🖌 🦉 🖉	Cycle: 1	- Curve: -	 Sensorgram Fc=1 	L	•	·圖·					
PE P 3 0 1.	RU 25560 T										Lock scale
	┢										
V New Cycle 30 1											
	25550 -										
	25540 -										
	25520										
	2000										
	bods										
	25520 -										
	25510 -										
	25500 -										
	25490		10	15	20	25	30	35	40	45	
	Ľ	•			20	Time					s
	Fc Time W	indow AbsResp SD L	RSD Slope RelRe	sp Baseline Id				Keywords	in cycle 1 Value		
	1							1000			
								and a second			
	1										
Flow: 30 Flow Path: 1	24.07	Proveniu									
Sample compartment temperature -	current: 25 °C	set: 25 °C Run time: 2	muai run								

2-1-1. 試料の添加

Inject command アイコン (\checkmark ; 赤色) または Menu bar の **Commands** \rightarrow **Inject...**を選択します。

Inject		— X—
Vial/well position:	R2 B1	ОК
<u>C</u> ontact time:	60 (s)	Cancel
		Help
Minimum required v	volume in vial/well for this inj	ection 58 (µ)

試料の位置(Vial/well position)を設定します。この時、試料の位置入力ボックス右のアイコ ンをクリックすると、ラックの図上で選択できます。

添加時間(contact time)を入力します。位置と添加時間を設定すると、Inject ダイアログの 右下に必要量が表示されます。

 \downarrow

Eiacore S200 Control Software - [manual run.bir]						
🔛 File Edit View Comm	ands Run Tools	Help					- @ ×
i 🗠 🖬 i 🏆 🎚 i 并 🖄 🖉	Cycle 1	Curve — Sensorgram	c=1	- la -			
PE///1200	RU						Lock scale
🔯 🖄 🖌 🔳	25560						
🖌 🦾 New Cycle 30 1							
	25550 -						
	25540 -						
	25530 -						
	25520 -						
			//well postion: H2 B1	ок			
	25510 -	Ca	and the second				
			0000				
		M					
	25500 -		O*C	880F			
	25490	10 20	20	50	60 70	80	90 100
				<u></u>			
	Fc Time Window A	aReap SD LRSD Slope R	elResp Baselin		Keyn	ords in cycle 1 Value	
					1		
Flow: 30 Flow Path: 1	1						
Online - COM1 Tem	perature: 24.97 °C	Running manual run					
Sample compartment temperature -	current: 25 °C set: 25 °C	Run time: 2 min					

試料をラックにセットする場合は、一旦、**Cancel** をクリックし、**Inject** ダイアログを解除してください。

↓ Eject rack tray アイコン ↓)または Menu bar の Commands→Eject Rack を選択しま

9 0	
Eject Rack Tray	—
Rack Tray Ejected Click OK to return the rack to compartment.	tray to the sample
Help	ОК
Time to auto close: 56	

ラックトレイを取り出し、適切な量の試料を分注したバイアルをセットします。ラックトレイを再びシステム本体にセットし **OK** をクリックします。

	¥	
Inject		— ———————————————————————————————————
Vial/well position:	R2 B1	ОК
<u>C</u> ontact time:	60 (s)	Cancel
		<u>H</u> elp
Minimum required v	olume in vial/well for this injec	ction: 58 (µl)

Inject command アイコンを選択し、試料位置および添加時間を入力します。 OK をクリックします。

必要に応じ、引き続き試料を添加します。

2-1-2. レポートポイントの追加

レポートポイントとは、センサーグラムの任意の時間におけるレスポンス(RU)を記録した ものです。レポートポイントは、センサーグラム下のレポートポイントテーブルに表示され ます。試料が添加されると、その都度、自動的にレポートポイントが取得されます。自動取得 したレポートポイント以外にも、任意の時間でいくつも追加することができます。

Toolbar の **Reference line** アイコン (+) または Menu bar の **View** \rightarrow **Reference Line** をク リックして、センサーグラム上にリファレンスラインを表示します。

マウスのカーソル(矢印)をリファレンスラインの縦線に合わせ、任意の時間までドラッグ します。または、任意の時間上のセンサーグラムをクリックし、リファレンスラインを移動 させます。

 \downarrow

Toolbar \mathcal{O} Add Report point $\mathcal{P}(\neg \mathcal{P})$) $\exists f(z) \in \mathcal{O}$ be a constant of \mathcal{O} and \mathcal{O}

Add Report F	Point		×
Report	Point		
<u>l</u> d:			
<u>T</u> ime:	219.0	(s)	
<u>W</u> indow	5	(s)	
🔽 Baseli	ne		
🔽 Add to all	curves in this cycle		
<u>H</u> elp		<u>o</u> k <u>c</u>	ancel

Id にコメントを入力します。相対値 0(ベースライン)として設定する場合は Baseline をチェックします。OK をクリックすると、レポートポイントが追加されます。 同時に取得している他のセンサーグラムについて、同じ位置にレポートポイントを取得する

場合には Add to all curves in this cycle にチェックを入れます。

2-1-3. 測定の終了

<u>
 Lot whice on King</u> 試料添加終了後、End Manual run アイコン Run をクリックします。装置は自動的に Standby flow 状態になります。

2-2. ファイルの保存

得られたセンサーグラムは、測定終了時に自動保存されます。 追加したレポートポイントを保存するには、Menu bar の **File** → **Save** をクリックします。

<u>2-3. データの</u>印刷

File → Print...をクリックします。印刷したい項目にチェックを入れ、OK をクリックします。

	Print	
	Printer Printer: Microsoft XPS D	ocument Writer
	 ✓ File Properties Method Wigard Results 	Sensorgram None ① Current Cycle ② Current Cycle ③ Range: ③ All cycles ☐ Include event log for cycles
	Help	OK Cancel
File Proper	ties	ファイルプロパティ
Method		測定内容
Wizard Res	sults	測定結果
		Current Cycle :表示されているセンサーグラム
		Range:複数サイクル存在する場合の必要な部分
		のセンサーグラム
		All cycles:すべてのセンサーグラムの印刷
Include eve	ent log for cycles	イベントログ

3. 固定化

リガンド

相互作用を検討する分子のうち、固定化する分子を**リガンド**と言います。リガンドの精製度 は、結合特異性の判定やアナライトの結合許容量に大きく影響します。<u>90%以上の精製度の</u> リガンドを使用してください。

リガンドの固定化は、センサーチップに直接固定化する方法と、タグを有する場合や抗体の 場合に、結合分子(抗体など)を介して固定化する方法(キャプチャー法)があります。

ここでは、センサーチップ CM5 に化学結合で固定化する代表的な方法を記載します。

各種固定化方法

詳細は、固定化プロトコール集、英語版マニュアルなどを参照してください。

アミンカップリング法

リガンド表面に存在するアミノ基(N 末端アミノ基またはリジン ε-アミノ基)を利 用して固定化する方法です。CM(カルボキシメチル)デキストランのカルボキシル 基を NHS(N-ヒドロキシスクシンイミド)で活性化し、リガンドを固定化します。 固定化後、残った活性 NHS 基をエタノールアミンでブロッキングします。

リガンドチオールカップリング法

リガンドの表面に存在する遊離型チオール基を用いて、-S-S-結合で固定化する方法です。

サーフェイスチオールカップリング法

センサー表面にチオール基を導入し、リガンドのカルボキシル基を介して-S-S-結合 で固定化する方法です。

マレイミドカップリング法

センサー表面にマレイミド基を導入し、リガンドの表面に存在する遊離型チオール 基を用いて固定化する方法です。

アルデヒドカップリング法

大量の糖鎖を持つムチンタンパク質等の糖を利用して固定化をする方法です。糖鎖 の非還元末端をメタ過ヨウ素酸により開裂させ、アルデヒド基を作成して、ヒドラ ジンにより、ヒドラジノ基を導入したセンサーチップにシッフ塩基で固定化します。

固定化量

実験の目的によって調節する必要があります。

特異的結合の有無の判定、スクリーニング

アナライトの結合レスポンスが十分得られる固定化量が必要となります。固定化量の下限として、理論的最大結合量 Rmax (固定化したリガンドにアナライトが最大量結合したときのレスポンス)が、最低でも 20RU は必要です。理論的な最大結合量は、以下の式で算出できます。

 アナライトの最大結合レスポンス(理論的最大結合量 Rmax)

 =アナライトの分子量 x リガンドの固定化量/リガンドの分子量 xS

 (Da)
 (RU)

 S はリガンドのアナライト結合部位数

(נימן)	リカンドの力丁里	50,000 Da
	リガンド固定化量	1,000 RU
	リガンド結合部位数	1
	アナライト分子量	20,000 Da
	理論的最大結合量(R _{max})	= 20,000 x 1,000 / 50,000 x 1 = 400 RU

反応速度定数 (*k_a*,*k_d*)、解離定数 (K_D) の算出

固定化量はできるだけ抑えます。マストランスポートリミテーション(固定化量が 多いことにより、アナライトの供給が追いつかない現象)を抑制するためです。マス トランスポートリミテーションが起きていると、正しい速度定数は算出できません。 至適固定化量は、以下の式から算出される最大と最小の固定化量(RU)の範囲とな ります。

最小固定化量(RU)
 40 x 1/S x (リガンドの分子量/アナライトの分子量)
 最大固定化量(RU)
 200 x 1/S x (リガンドの分子量/アナライトの分子量)

S はリガンドのアナライト結合部位数

(例) リガンドの分子量 50 kDa
 アナライトの分子量 100 kDa
 リガンド結合価数 1
 最小固定化量 40 x 1/1 x (50,000/100,000) = 20 RU
 最大固定化量 200 x 1/1 x (50,000/100,000) = 100 RU
 至適固定化量範囲 20~100RU

3-1. アミンカップリング法

リガンド表面に存在するアミノ基(N 末端アミノ基またはリジン ε-アミノ基)を利用して固 定化します。CM デキストランのカルボキシル基を NHS(N-ヒドロキシスクシンイミド)で活 性化し、至適な緩衝液で希釈したリガンドを固定化します。残った活性 NHS 基をエタノール アミンでブロッキングします。

準備するもの

アミンカップリングキット (BR-1000-50)

アミンカップリングキットには、以下の試薬が含まれています。

EDC (N-ethyl-N'- (3-dimethylaminopropyl) carbodiimide hydrochloride)

NHS (N-hydroxysuccinimide)

1 M ethanolamine hydrochloride 溶液 (pH 8.5)

キットに添付されている説明書に従い、EDC および NHS はそれぞれ 10 ml の超純水 に溶解し、400mM EDC、100mM NHS を調製します。ただちに 200 µl ずつを 7 mm プ ラスチックバイアルにそれぞれ分注し、ラバーキャップをして使用直前まで-20 ℃ で冷凍保存してください。使用直前に 1 組ずつの試薬を取り出して、融解させて使 用します。融解後、試薬の再凍結はできません。エタノールアミンは、溶液で供給さ れるので冷蔵 (4 ℃) 保存します。200 µl ずつ小分けしておくか、使用する直前に分 注します。

ランニング緩衝液

1級アミンを含まない緩衝液を準備してください。

(トリスやグリシン緩衝液は、1級アミンの緩衝液です。)

リガンド

アジ化ナトリウム等の求核性物質を含まないものを準備してください。リガンドの 安定化目的のために混入されている BSA(ウシ血清アルブミン)等のタンパク質類 は、あらかじめ除去するか、入っていないものを準備してください。

リガンド希釈液

10 mM 酢酸緩衝液、10mM HEPES 緩衝液、10 mM Borate/1 M NaCl 緩衝液(pH 8.5)など

リガンドの調製

リガンドがタンパク質の場合

リガンドの等電点より 0.5~2 低い pH の緩衝液を用いて、終濃度 5~200 µg/ml 程度 になるよう、リガンドを希釈します。等電点が中性付近であれば、希釈用緩衝液とし て、10 mM 酢酸ナトリウム緩衝液(pH 4.0-5.5)を用います。pH 3.5 以下のものは使 用しないでください。等電点が塩基性であれば、希釈用緩衝液として、10 mM HEPES 緩衝液(pH 6.0-8.0)を用います。

等電点が不明な場合や既知の場合であっても、固定化前に、あらかじめ 3-1-1 章の pH Scouting により、至適なリガンド希釈液の pH を確認します。

なお、濃縮効果が確認できない酸性タンパク質の場合は、サーフェスチオールカッ プリングもしくはリガンドをビオチン化後、センサーチップ SA または CAP に固定 化する方法を検討します。

リガンドがペプチドや低分子物質の場合

100 μg/ml 以上の高濃度のリガンドを使用し、弱アルカリ性条件 10 mM Borate/1 M NaCl 緩衝液(pH 8.5)で希釈します。活性型 NHS 基とアミノ基との反応効率が、pH 8.5 前後でもっとも高いためです。

溶解性が低い低分子化合物を固定化する際には、DMSO などの有機溶媒存在下で固定化を実施します。有機溶媒を利用する際には化学耐性を確認してください。

3-1-1. リガンド希釈液の pH 選択

センサーチップ CM5 表面にコーティングされている直鎖デキストランにはカルボキシル基が 導入されているため、表面は負に荷電しています。リガンドを正に荷電した状態で添加する と、負に荷電している CM デキストランとの間に静電気的な結合が生じ、リガンドを CM デキ ストラン中に濃縮させることができます。この濃縮効果のことを、プレコンセントレーショ ン効果といいます。この条件を用いることで低濃度のリガンドをセンサーチップ表面に高濃 度で供給でき、効率よく固定化することができます。

等電点が既知のリガンドの場合

等電点よりも 0.5 以上低い pH を使用する。ただし、等電点が既知の場合であっても、 高次構造の状態などにより、濃縮される pH が予想外に異なることもあるため、固定 化前に pH Scouting メソッドで確認することをおすすめします。

等電点が不明な場合

pHScouting を実行し、希釈液の pH を検討します。この操作は、何も処理していな いフローセル(固定化実施予定のセル)を使用して、各 pH におけるセンサー表面へ のリガンドの濃縮度合いを評価します。この検討で、リガンドは固定化されません。 検討後、引き続き、そのセルにリガンドを固定化してください。

リガンド添加終了後、ランニング緩衝液に置換されると、通常は静電的に結合した リガンドはセンサーチップ表面から速やかに解離します。しかし、稀に、リガンドが デキストランに非特異的吸着を起こすため、pH Scouting では、リガンド添加終了 後、洗浄溶液(50 mM NaOH)を添加し、吸着したリガンドを洗浄する操作が組み込 まれています。

なお、終濃度で 50 mM 以上の塩が含まれる場合には、静電的な濃縮作用が阻害されるため、 プレコンセントレーション効果が起きなかったり、効果が低いことがあります。この場合に は、リガンド溶液の希釈倍率を上げるか、バッファー置換で塩濃度を下げてからお試しくだ さい。 Toolbar の Home アイコン (🏫) または Menu bar の Run → Template...をクリックしてス タートスクリーンに戻ります。

🔤 Biacore S2	00 Control Software
Eile <u>V</u> iev	v <u>R</u> un <u>T</u> ools <u>H</u> elp
i 🕞 📑 📑	P 🛄 (#)P 🏫
Templates	Tools
Biacore T	emplates preparation scouting publication evelopment
C Kinetics	s/affinity

Biacore Templates→Surface Preparation→pH Scouting を選択し、ダブルクリックまたは Open...をクリックします。以前にテンプレートを C:¥Bia Users¥Templates フォルダに保存し ている場合は、右側の MyTemplates 一覧表に表示されます。別フォルダに保存したテンプレ ートは、Browse...をクリックして選択します。

Method Builder の Main ダイアログが表示され、Overview 画面には全体の設定内容が表示されます。以下に変更項目を記載します。Method Builder の詳細は 6 章を参照してください。

🔤 Method Builder - Mai	n	
Overvie <u>w</u>	Assay steps	General settings
General Settings Assay Steps	Sample [Sample] Sample 1 time as entered.	Concentration unit = nM Data collection rate = 1Hz Sample compartment temperature = 25 °C Detection = Single
Cycle Types		Settings for assay step "Sample"
Verification		Temperature = 25 °C Buffer = A
		Settings for cycle type "Sample"
Setup <u>R</u> un		⊕ Sample ⊕ Sample B: Sample
		Expand All Collapse All
	Save Save As	Qose

Cycle Types をクリックします。

 \downarrow

🔤 Method Builder - M	ain				
Overview General Settings Assay Steps Cycle Types Verification	Cycle types Sample	Settings for St	New Delete Copy The name ample 1	Description of selected cycle ty This cycle type is used in the 5 in immobilization buffer follow Note: The surface should not	ype Sample step. It contains injection of ligand diluted d by a wash with 50 mM NaOH. be activated.
Setup <u>B</u> un	Sample 1 Regeneration 1	Type: Sample sglution: Contact jime: Dissociation time: Flow gate: Elow path: Predip Mix with: Fraction Stat Extra wash aft Stabilization pe	Low sample consumption Is variable 180 (s) 0 (s) 5 (µl/min) - ~		Method Variables Evaluation Variables Set property as variable Sample solution Contact time (s) Dissociation time (s) Flow rate (µl/min)

1 サイクルの内容を指定します。デフォルトでは、流速:5 μl/min、リガンド溶液添加:3 分間、洗浄溶液添加:30 μl/min、50 mM NaOH、30 秒間です。

変更する際には、Sample1、Regenration1 をクリックして、画面右側の各項目を変更します。

設定後、Setup Run をクリックします。

	\downarrow	
🔤 Method Builder -	Detection	×
Detection		
Flow path: 2	•	
Help	< <u>B</u> ack Next > Close	e

Flow path で固定化予定セル(偶数セル)を選択して Next > をクリックします。

 \downarrow

30 3. 固定化

say steps sample ariable values for Assay Step Sample Triable values for Assay Step Sample Sample solution Buffer_name Protein A 10ug/mL 10 mM Acetate pH 5.5 Protein A 10ug/mL 10 mM Acetate pH 5.0 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.5	ssay steps Sample stable values for Assay Step Sample solution Sample solution Buffer_name Protein A 10ug/mL 10 mM Acetate pH 5.5 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.0 NH	Meth	od Builder - Variable	25
say steps sample mable values for Assay Step Sample Sample solution Buffer_name Protein A 10ug/mL 10 mM Acetate pH 5.5 Protein A 10ug/mL 10 mM Acetate pH 5.0 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.0 Protein A 10ug/mL 10 mM Acetate pH 4.0	ssay steps Sample sriable values for Assay Step Sample Sample solution Buffer_name Protein A 10ug/mL 10 mM Acetate pH 5.5 Protein A 10ug/mL 10 mM Acetate pH 5.0 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.0 Protein A 10ug/mL 10 mM Acetate pH 4.0 Protein A 10ug/mL 10 mM Acetate pH 4.0			
ample anable values for Assay Step Sample Sample 1 Sample solution Buffer_name Protein A 10ug/mL 10 mM Acetate pH 5.5 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.0	anaple anable values for Assay Step Sample Sample 1 Sample solution Buffer_name Protein A 10ug/mL 10 mM Acetate pH 5.5 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.0 Protein A 10ug/mL 10 mM Acetate pH 4.0	ssay s	steps	
riable values for Assay Step Sample Sample 1 Sample solution Buffer_name Protein A 10ug/mL 10 mM Acetate pH 5.5 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.0 Protein A 10ug/mL 10 mM Acetate pH 4.0	ariable values for Assay Step Sample Sample 1 Sample solution Buffer_name Protein A 10ug/mL 10 mM Acetate pH 5.5 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.0 Protein A 100g/mL 10	Samp	le	
ariable values for Assay Step Sample Sample solution Buffer_name Protein A 10ug/mL 10 mM Acetate pH 5.5 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.0 Protein A 10ug/mL 10 mM Acetate pH 4.0	ariable values for Assay Step Sample Sample 1 Sample solution Buffer_name Protein A 10ug/mL 10 mM Acetate pH 5.5 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.0			
riable values for Assay Step Sample Sample solution Buffer_name Protein A 10ug/mL 10 mM Acetate pH 5.5 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.0 Protein A 10ug/mL 10 mM Acetate pH 4.0	ariable values for Assay Step Sample Sample solution Buffer_name Protein A 10ug/mL 10 mM Acetate pH 5.5 Protein A 10ug/mL 10 mM Acetate pH 4.5			
ariable values for Assay Step Sample Sample 1 Sample solution Buffer_name Protein A 10ug/mL 10 mM Acetate pH 5.5 Protein A 10ug/mL 10 mM Acetate pH 5.0 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.0 Protein A 10ug/mL 10 mM Acetate pH 4.0	ariable values for Assay Step Sample Sample solution Buffer_name Protein A 10ug/mL 10 mM Acetate pH 5.5 Protein A 10ug/mL 10 mM Acetate pH 4.5			
ariable values for Assay Step Sample	ariable values for Assay Step Sample Sample solution Buffer_name Protein A 10ug/mL 10 mM Acetate pH 5.5 Protein A 10ug/mL 10 mM Acetate pH 4.5			
ariable values for Assay Step Sample	ariable values for Assay Step Sample Sample 1 Sample solution Buffer_name Protein A 10ug/mL 10 mM Acetate pH 5.5 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.0 DM Acetate pH			
Sample Sample Sample solution Buffer_name Protein A 10ug/mL 10 mM Acetate pH 5.5 Protein A 10ug/mL 10 mM Acetate pH 5.0 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.0	Sample Sample Sample solution Buffer_name Protein A 10ug/mL 10 mM Acetate pH 5.5 Protein A 10ug/mL 10 mM Acetate pH 5.0 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.0			
Sample solution Buffer_name Protein A 10ug/mL 10 mM Acetate pH 5.5 Protein A 10ug/mL 10 mM Acetate pH 5.0 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.0	Sample solution Buffer_name Protein A 10ug/mL 10 mM Acetate pH 5.5 Protein A 10ug/mL 10 mM Acetate pH 5.0 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.0	anable	e values for Assay Step	p Sample
Sample Solution Burrer_name Protein A 10ug/mL 10 mM Acetate pH 5.5 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.0	Sample Solution Burrer_name Protein A 10ug/mL 10 mM Acetate pH 5.5 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.0		Sai	mple 1
Protein A 10ug/mL 10 mM Acetate pH 5.0 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.0 I 0 mM Acetate pH 4.0	Protein A 10ug/mL 10 mM Acetate pH 5.0 Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.0		Protein A 10ug/ml	10 mM Acetate pH 5.5
Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.0	Protein A 10ug/mL 10 mM Acetate pH 4.5 Protein A 10ug/mL 10 mM Acetate pH 4.0		Protein A 10ug/mL	10 mM Acetate pH 5.5
Protein A 10ug/mL 10 mM Acetate pH 4.0	Protein A 10ug/mL 10 mM Acetate pH 4.0		Protein A 10ug/mL	10 mM Acetate pH 5.0
Floren A lought. 10 mm Acede pr 4.0	Protein A roughil. 10 min Acetale pr 4.0	5	Protein A 10ug/mL	10 mM Acetate pH 4.5
		+	Protein A Toug/mL	10 mm Acetate pri 4.0
]	
		Hel		
		Help	p import	

リガンド名称 (Sample solution)、リガンド希釈液 (Buffer_name) を入力して Next > をクリッ クします。

 \downarrow

🔤 Meth	od Builder - Cycle ru	n list		
Cycle	Assay step name	Sample 1 Solution	Sample 1 Buffer_name	
1	Sample	Protein A 10ug/mL	10 mM Acetate pH 5.5	a
2	Sample	Protein A 10ug/mL	10 mM Acetate pH 5.0	
3	Sample	Protein A 10ug/mL	10 mM Acetate pH 4.5	
4	Sample	Protein A 10ug/mL	10 mM Acetate pH 4.0	
	-			
	n Overview	Print		(Back Next) Close

測定サイクルリストが表示されるので確認後、Next >をクリックします。

	\downarrow
🔤 Method Builder - System Preparations	×
☑ Prime before run	
Nomalize detector	
Temperature settings	
<u>A</u> nalysis temperature:	25 (°C)
Sample compartment temperature:	25 (°C)
Help	< <u>B</u> ack Next > Qose

I.

測定を始める前に、Prime および Normalize (7-2 章参照)を実施する場合はチェックします。 Next >をクリックします。

E Method Builder - Rack Positions					
Reagent Rack 2	Position	Volume (µl)	Content	Туре	Sample 1 Buffer_name
	R2 A1	588	50 mM NaOH	Regeneration	1
	R2 B1	43	Protein A 10ug/mL	Sample	10 mM Acetate pH 5.5
	R2 B2	43	Protein A 10ug/mL	Sample	10 mM Acetate pH 5.0
	R2 B3	43	Protein A 10ug/mL	Sample	10 mM Acetate pH 4.5
	R2 B4	43	Protein A 10ug/mL	Sample	10 mM Acetate pH 4.0
				< <u>B</u> ack	ext >

右側の表で試薬の位置と必要量(µl)を確認します。表をクリックすると、対応する左側のラ ック上のバイアル位置が強調表示になります。位置と必要量(µl)を確認しながら、調製した リガンド、試薬バイアルをラックにセットします。

 \downarrow

Eject Rack をクリックして、**Rack tray port** を開きます。

\downarrow	
Eject Rack Tray	—
Rack Tray Ejected Click OK to return the rac compartment.	d k tray to the sample
Help	ОК
Time to auto close: 56	

ラックトレイを奥まで挿入し、**OK**をクリックします。

Eject Rack Tray ダイアログが閉じた後、**Rack Positions** ダイアログ右下の **Next >**をクリック します。

 \downarrow
🔤 Method Builder -	Prepare Run P	rotocol					- • ×
Tahoma	- 10	• B	ΙÜ				
Prepare Run F Make sure the Make sure all s Positions setup Place the buffer Notel Standby : Make sure ther If necessary, er	Protocol correct senso amples & rea o. (Vials shoul r(s) on the left after run will u e is fresh wat mpty the wast	r chip is (gents are d be seal hand tra se buffer er in the v re bottle b	docked. e loaded i led with rr y and ins A. water bott before sta	n the rack ar ubber caps a ert the corre tle on the rig rt of the run.	nd microplate and microplate ct tubing(s), s ht hand tray.	according to	o the Rack ive foil.)
Estimated run time: Estimated buffer con	32 min (excludin sumption:	g condition	al statemer	nts, temperature	changes and s	tandby flow)	
Buffer A At least 100 m plus 65 ml/day standby after n	for un	Not in use		Not in	use	Not in	use
Help	Menu 🔻				< <u>B</u> ack	<u>S</u> tart	<u>C</u> lose

基本的な注意事項、測定時間、必要なランニング緩衝液量が表示されます。 Start をクリックします。

 \downarrow

設定したメソッドを保存するかどうか、メッセージが表示されます。保存する場合は、Save as で C:¥Bia Users¥Templates フォルダ(スタートスクリーン画面の My Templates から呼び 出せます)、または Bia Users の各自のフォルダに保存します。保存しない場合は、Don't Save を選択します。

		\downarrow			
Save Results Fr	rom Run As				? 🔀
Save in:	🗁 T100manual		💌 G 🕫	ب 😢 🔁	
My Recent Documents	i manual.bir				
My Documents					
My Computer					
	File name:	pHscouting		~	Save
My Network	Save as type:	Result file (*.blr)		~ (Cancel

Save in:に測定結果の保存先を設定し、File name にファイル名を入力して、Save をクリック すると測定が開始します。

pH Scouting 終了後、装置は Standby flow 状態になります。

Biacore S200 Evaluation Softwareを開いて、ナビゲーションパネルの**Data→Open**を選択して、取得したデータを開きます。Evaluation ExplorerのAll sensorgramesをクリックして、センサーグラムを重ね書きします。

Sensorgramウインドウ右のTools の、Sensorgram Adjustmentの、X-Adjustment: Zero at report point baseline、Y-Adjustment: Zero at report point baselineを選択します。Toolsの Color Byで、Buffer_nameを選択します。濃縮効果が得られている、至適条件を確認しま

上のセンサーグラムでは、pH5.5 または 5.0 が至適条件です。

Biacore[®]S200 日本語取扱説明書

濃縮レベルは、添加開始直後の溶液効果によるベースライン低下位置から、添加終了直前の レスポンスの高さで評価します。

濃縮効果が確認できる、もっとも高い pH を固定化条件として採用することが望ましいです。 上の結果では、pH4 がもっとも濃縮効果が高いですが、pH が低いほど活性型 NHS 基とアミノ 基とのカップリング効率は低下します(活性化 NHS 基とアミノ基の至適反応条件は pH8.5 で す)。また、タンパク質の安定性は、一般的に中性に近い程安定です。pH を変化させても、濃 縮効果(添加時の傾き)に極端な差がない場合は、pH が高い条件を選択するのが望ましいで す。上記結果では、濃縮量が妥当であれば pH5 を選択します。

なお、pH Scouting における濃縮レベル以上の固定化は困難です。

(例えば、ターゲットの固定化量が 10000 RU で、1 分当たりの濃縮量が 100 RU の場合、固定 化時にリガンドの添加時間を 7 分に設定した場合、想定される濃縮量は多くても 700 RU で、 ターゲット量を確保することはできません。)

確認した濃縮レベル (RU/min) から想定される固定化量より多くの固定化量を望む場合は、リ ガンドへの影響がなければより低 pH を採用するか、リガンド濃度を上げて (例 50~100 µg/ml 等)、再度 pH Scouting を実施し濃縮レベルを確認してください。

低 pH 条件で、センサーチップ表面にリガンドが吸着する条件は、リガンドが酸変性している 可能性があるため使用はおすすめできません。(例:前ページの pH4.5、4.0 の条件では、リガ ンドがチップ表面に残っています。)

3-1-2. 基本プロトコールでの固定化

Toolbar の Home アイコン(🎓)または Menu bar の Run→Template…をクリックしてスタ ートスクリーンに戻ります。

520	Biaco	re S200	Control	Software	2		
11	<u>F</u> ile	<u>V</u> iew	<u>R</u> un	<u>T</u> ools	<u>H</u> elp		
÷	🕞 🖥			FIB	Ê		
	Fempla	ates	Tools				
	Diago		nnlate				
	Diaco		npiate	5			
	🔜 Bla	ank tem	plate				
	🛄 Su	irface pi	reparati	on			
(pH sco	outing	_)			
	- I <u>5</u>	Immol	bilizatio				
	As As	sav dev	elonme	TIL .			
	🚞 Bir	nding so	creen				
	🔲 Kir	netics/a	ffinity				
			1				

Biacore Templates→Surface Preparation→Immobilization を選択し、ダブルクリックまたは Open...をクリックします。以前にテンプレートを C:¥Bia Users¥Templates フォルダに保存し ている場合は、右側の MyTemplates 一覧表に表示されます。別フォルダに保存したテンプレ ートは、Browse...をクリックして選択します。

	\downarrow	
Improbilization - Immobilization Setup		注意:
Chip type: CM5		リファレンスセル
Flow cell 1		として設定できる
Immobilize flow cell 1	Method: Amine	のは Flow cell1 また
 Aim for immobilized level Specify contact time and flow rate 	Ligand: Dilute ligand	は3のみです。設定
Blank immobilization	Contact time: 420 (s) Flow rate: 10 (µl/min)	を間違えるとリフ
Flow coll 2		ァレンスの差引が
Immobilize flow cell 2	Method: Amine	できません。
 Aim for immobilized level Specify contact time and flow rate 	Ligand: Dilute ligand	測定時のリファレ
Blank immobilization	Contact time: 420 (s) Flow rate: 10 (µl/min)	ンスセルの自動差
		引設定方法は 次の
Flow cell 3		
Aim for immobilized level	Method: Anime Ugand: Dilute ligand	中から選択します。
Specify contact time and flow rate	Add molecular weight	
O Blank immobilization	Contact time: 420 (s) Flow rate: 10 (µl/min)	

Chip type のプルダウンメニューで、使用するセンサーチップ(CM5)を選択します。
 Flow cells per cycle で一度に固定化するセルの数を選択します。通常、1を選択します。
 キャプチャー分子を複数セルに固定化する場合には、2(Fc2-1 または Fc4-3 で測定)または4
 (Fc2-1,3-1,4-1 または Fc2-1,4-3 で測定)を選択します。

Biacore[®]S200 日本語取扱説明書

Flow cell 2	
Immobilize flow cell 2	Method: 🔤 Amine 👻
Aim for immobilized level	Ligand: Protein A 10ug/mL, pH5 🔲 Dilute ligand
 Specify contact time and flow rate 	Add molecular weight
Blank immobilization	Contact time: 420 (s) Flow rate: 10 (µl/min)

固定化する Flow cell にチェックを入れます。

Method固定化方法を選択します。(ここでは Amine を選択します。)Ligandリガンドの名称を入力します。

Dilute ligand にチェックを入れると、リガンドを固定化緩衝液で添加直前に希釈するコマン ドを使用できます。リガンドが酸条件で変性し易い場合などに使用します。

標準プロトコールでは、NHS 活性化とブロッキングは流速 10 µl/min、添加 7 分間と固定され ています。リガンドの添加条件については、以下の項目から選択します。

Aim for immobilized level

リガンドの固定化量を調節して固定化できます。

Specify contact time and flow rate

リガンドの添加時間と流速を指定して固定化できます。

Blank Immobilization

リガンドは添加しません。NHS 活性化後エタノールアミンでブロッキング したリファレンスセルを作成できます。

ここでは、**Specify contact time and flow rate** を選択し、標準的な条件、添加時間 420 (s)、 流速 10 (µl/min)を入力します。

相互作用測定でフラグメント化合物用の Binding Level Screen を使用する場合は、Add molecular weight にチェックを入れてリガンド分子量を入力します。(理論的 R_{max}の算出に使用します。)

Next >をクリックします。

補足 3-2. 標準プロトコールの変更 Specify contact time and flow rate は、活性化時間およびブロッキング時間 ています。固定化量を多くする目的で添加時間を長くしたい、逆に、固定 ために添加時間を短くしたいなど、既存のメソッドを変更する場合には、 ドを追加します。	は7分間と指定され 定化量を少なくする 、次の方法でメソッ
ウインドウ左下の Custom Methodsをクリックします。	
Methods:に既存メソッドが表示されるので、Amine をクリックしてハイ	ライトにします。
🔤 Custom Methods	
Methods: addehyde Methods: Anine Meleimide Surface thiol	New Copy Delete
ウインドウ右の Copy をクリックします。 ↓	
Custom Methods	
Methods: Copy of Amine	New Copy Delete
Methods: に、コピーしたメソッドが追加されます。	
\downarrow	
Method name: Copy of Amine	
Command Solution Contact Time (s) Flow Rate (µl/min)	Pre-conc 🎲
PRE-CONC Specified in Immobilization Setup	
MIXINJECT EDC + NHS (50:50) 420 10	Inject
	Mi <u>x</u> & Inject 👪
INJECT Ethanolamine 420 10	Wash
コピーしたメソッドを元に 変更したいコマンドをダブルクリック また	+ 课択 て Edit た
コレーしたハノットをルに、反史したいコマントをラフルフリック、また クリックします。	w迭かして EUII を
\downarrow	

(例) MIXINJECT EDC+NHS (5	50:50) の Contact time 項目変	更	
Mix 8	i Inject		
Solu Mix u Frag Cont Elow 添加時間を変更後、 OK をク	tion: EDC with: NHS tion: 50 (%) of mix with solution act time: 500 (s) rate: 10 (μ l/min) リックします。 ↓	OK Cancel <u>H</u> elp	
	Contact Time (s) Elo	w Rate (ul(min)	2.8
PRE-CONC Specified in Im	mobilization Setup		Pre-conc
MIXINJECT EDC + NHS (50	0:50) 500	10	Inject 💉
WASH Ethanolamine	mobilization Setup 420	10	Mi <u>x</u> & Inject 🕌 ∭ash
OK をクリックして確定する	と、Method プルダウンに追	加されます。	

Immobilization - System Preparatio	ns 💽
 ✓ Prime before run ─ Normalize detector 	
Temperature settings Analysis temperature: Sample compartment temperature:	25 (°C) 25 (°C)
Help	< <u>B</u> ack Next > Glose

固定化操作を始める前に、Prime および Normalize を実施する場合にはチェックを入れます。 Temperature settings は予め次の設定になっており、変更も可能です。

Analysis temperature	25 °C
Sample compartment temperature	25 °C

Next >をクリックします。

Immobilization - Rack Positions				
Reagent Rack 2	Position	Volume (µl)	Content	Туре
	R2 B1	89	EDC	Immob Fc 2
	R2 B2	89	NHS	Immob Fc 2
	R2 B3	Empty	EDC/NHS, min. capacity 124µl	Immob Fc 2
2 Y <mark>9</mark> 4Q7 YQ4Q7 Y	R2 B4	129	Ethanolamine	Immob Fc 2
	R2 B5	98	Protein A 10ug/mL, pH5	Immob Fc 2
Help Menu V Bect Rack			< <u>B</u> ack Ne	axt >Qose

右側の表で試薬の位置と必要量(µl)を確認します。表をクリックすると対応する左側のラック上のバイアル位置が強調表示になります。位置と必要量を確認しながらバイアルをラックにセットします。

EDC	89 μl/ 7 mm プラスチックバイアル
NHS	89 μl/ 7 mm プラスチックバイアル
空(NHS/EDC 混合用)	空/ 7 mm プラスチックバイアル
Ethanolamine	129 μl/ 7 mm プラスチックバイアル
Ligand	98 μl/ 7 mm プラスチックバイアル
固定化時間・流速を変更し	た場合には必要量が変わります
	\downarrow

Eject Rack をクリックして、**Rack tray port** を開きます。

ラックトレイを奥まで挿入して、OK をクリックします。Eject Rack Tray ダイアログが閉じた 後、Rack Positions ダイアログ右下の Next >をクリックします。

 \downarrow

immobilization	- Prepare Run Prot	ocol			- • *
Tahoma	• 10 •	B / U			
Prepare Run Make sure the Make sure all Positions sett Place the buff Notel Standby Make sure the If necessary,	Protocol correct sensor cl samples & reage p. (Vials should b r(s) on the left ha after run will use re is fresh water i ampty the waste b	hip is docked. hts are loaded be sealed with hund tray and in buffer A. n the water bo pottle before st	in the rack and mi rubber caps and m sert the correct tub ttle on the right ha tart of the run.	croplate according to icroplate with adhesi ing(s), see below. nd tray.	o the Rack ive foil.)
Estimated run time: Estimated buffer co	38 min (excluding consumption:	onditional stateme	ents, temperature chan	ges and standby flow)	
A Running buff At least 100 plus 65 ml/d standby after	er ml ay for run	t in use	Not in use	D Not in	use
Help	Menu 🔻			< <u>B</u> ack <u>S</u> tart	Glose

基本的な注意事項、固定化時間、必要なランニング緩衝液量が表示されます。 Start をクリックします。

設定したテンプレートを保存するかどうか、メッセージが表示されます。保存する場合は、 Save as で C:¥Bia Users¥Templates フォルダまたは Bia Users の各自のフォルダに保存しま す。保存しない場合は、Don't Save を選択します。

↓

Save in:に測定結果の保存先を設定し、File name にファイル名を入力して、Save すると測定 がスタートします。

 \downarrow

固定化終了後、装置は Standbyflow 状態になります。測定データは、入力したファイル名で 自動的に保存されます。

補足 3-3. 実行中メソッドの	D緊急停止
測定開始後、メソッドを緊急停	止したい場合には、 <u>キーボードの[Ctrl]</u> キーと[Break]キーを同
時に押してください。	
Bia	core S200
	Do you want to wash the system?
	Yes No
ランニング緩衝液で洗浄する必	要があれば Yes を、必要がなければ No を選択します。

42 3. 固定化

固定化量(RU)が別途表示されます。

5	🖣 Immobiliz	zation Results						
	Chip: CM5 Flow cells pe	er cycle:						
	Flow cell	Procedure	Method	Ligand	Ligand MW (Da)	Response Bound (RU)	Response Final (RU)	
	4	Time and flow	Amine	ProtreinA 20ug/ml, pH5		1383.8	1513.9	
	<u>H</u> elp) <u>P</u> rint					(<u>C</u> lose

補足 3-4. 固定化量の確認

固定化量として Response Bound と Response Final の 2 種類が表示されます。

Bound リガンド添加前後のセンサーグラムの高さの差

Final NHS/EDC 添加前からエタノールアミン添加終了後の差

リガンドがアグリゲーションしている場合やセンサーチップ表面に吸着する場合は、エタノ ールアミンを添加することにより、非共有結合でセンサーチップ表面に残ったリガンドは洗 い流されるため、Final のレスポンスは Bound より小さくなります。また、固定化量が少ない 場合は、NHS 化した部分の大半に(一部はリガンドが導入されている)エタノールアミンが 導入されるため、Final のレスポンスは Bound より大きくなることがあります。いずれの場合 も、レスポンスが小さい方を固定化量として採用してください。

3-1-3. 固定化量を調節して固定化

反応速度定数の算出を目的とした実験の場合、固定化量を少なく調節する必要があるため、 リガンドの添加方法として、Aim for Immobilized level を利用します。なお、固定化量を多く 設定する場合や固定化量の再現性を確保したい場合には、リガンド添加時間を指定して固定 してください。(補足 3-2 参照。)

Toolbar \mathcal{O} Home $\mathcal{P} \mathbf{1} \mathbf{2} \mathbf{2}$ () state Menu bar \mathcal{O} Run \rightarrow Template... $\mathcal{E} \mathcal{O} \mathcal{V} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O}$ タートスクリーンに戻ります。

Biacore Templates→Surface Preparation→Immobilization を選択し、ダブルクリックまたは **Open...**をクリックします。以前にテンプレートを C:¥Bia Users¥Templates フォルダに保存し ている場合は、右側の MyTemplates 一覧表に表示されます。別フォルダに保存したテンプレ ートは、Browse…をクリックして選択します。

Immobilization - Immobilization Setup		注意:
Chip type: CM5		リファレンスセ
low cell 1		として設定でき
Immobilize flow cell 1	Method: Amine	のは Flow cell1 ま
Aim for immobilized level	Ligand: Dilute ligand	
Specify contact time and flow rate	Add molecular weight	は3のみです。設定
Blank immobilization	Contact time: 420 (s) Flow rate: 10 (µl/min)	を間違えるとり
low cell 2		ァレンスの差引れ
Immobilize flow cell 2	Method: Amine	できません。
Aim for immobilized level	Ligand: Dilute ligand	
Specify contact time and flow rate	Add molecular weight	測定時のリファ
Blank immobilization	Contact time: 420 (s) Flow rate: 10 (µl/min)	ンスセルの自動差
low cell 3		引設定方法は、次の
Immobilize flow cell 3	Method: Amine	中から選択します
Aim for immobilized level	Ligand: Dilute ligand	
Specify contact time and flow rate	Add molecular weight	
Blank immobilization	Contact time: 420 (s) Flow rate: 10 (µl/min)	
low cell 4		
Immobilize flow cell 4	Method: Amine	
Aim for immobilized level	Ligand: Dilute ligand	

Chip type のプルダウンメニューで、使用するセンサーチップ(**CM5**)を選択します。**Flow cells per cycle** で 1 を選択します。(Aim for immobilized level では複数セルを指定できません。)

	\downarrow
Flow cell 2	
Immobilize flow cell 2	Method: 🔤 Amine 🗸
Aim for immobilized level	Ligand: Protein A 10ug/mL, pH5 📄 Dilute ligand
$\bigcirc\ \ {\rm Specify}$ contact time and flow rate	Add molecular weight
Blank immobilization	Target level: 250 (RU) Wash solution: 50 mM NaOH

固定化する Flow cell を選択します。Aim for immobilized level にチェックを入れます。

Method	固定化方法	Amine を選択
Ligand	リガンドの名称	
Target level	目標固定化量(R	U)
Wash solution	固定化前のリガン	・ドテスト添加後のチップ表面洗浄液
	(50 mM NaOH)	

各項目に情報を入力後、Next >をクリックします。

以降、前章と同様に進みます。

🚥 Immobili	zation Resul	ts					
Chip: CM5 Flow cells pe	er cycle:						
Flow cell	Procedure	Method	Ligand	Ligand MW (Da)	Response Bound (RU)	Response Final (RU)	Target Reached
2	Target level	Amine	antibody 10ug/ml pH5		2998.5	3092.3	Yes
<u>H</u> elp	<u>Print</u>						<u>C</u> lose

Immobilization Results ダイアログに固定化量(RU)が表示されます。目標固定化量に到達したかは、Target Reached に表示されます。最終的な固定化量は、前章同様、小さい方の Response を採用してください。

補足 3-5. 固定化ウィザードの中断

このウィザードでは NHS 活性化前に、リガンド溶液をテスト添加し、濃縮効果が得られるか、 また、その結果から目的の固定化量が調節できる条件であるかを判断します。 リガンド条件に問題がある場合、この時点でテンプレートが自動的に終了します。リガンド は固定化されていないので、リガンド溶液を調製し直し、同じフローセルに再度固定化を試 みてください。

nip: CM5						
Flow cell	Procedure	Method	Ligand	Response Bound (RU)	Response Final (RU)	Target Reached
2	Target level	Amine	antibody 10ug/ml pHS		\subseteq	No - Preconcentration binding is too fast
		_				

Preconcentration binding is too fast

濃縮効果が強すぎ、添加時間を短くしても目標のレベル以上固定化される と判断された場合に表示されます。希釈緩衝液の pH を上げるか、リガンド 濃度を下げる必要があります。

Preconcentration binding is too slow

濃縮効果が不十分または観察されず、添加時間を長くしても目標のレベル まで固定化できないと判断された場合に表示されます。希釈緩衝液の pH を 下げるか、リガンド濃度を上げる必要があります。

4. マニュアル測定による相互作用の条件検討

固定化が終了したら、マニュアル操作でアナライトの特異的結合を確認します。必要であれ ば、引き続き、再生条件を検討します。再生条件が決まったら、同一濃度のアナライトを添加 し、再現性を確認します。なお、シングルサイクル法で1つのサンプルについて速度定数・ 解離定数を算出する場合には、再生条件の検討は必要ありません。

ここでは、自由度の高い Manual run による検討方法を紹介します。

メソッドでは、Assay Development フォルダーにある、次の検討用メソッドを使用できます。 Interaction characteristics (結合確認試験)、Regeneration scouting (再生条件検討)、Buffer scouting using ABA-inject (ABA-inject を用いたランニングバッファー検討)、および Buffer scouting using buffer selector (Buffer selector を使用したバッファー検討)。詳細は、英語版マニュアル (Biacore S200 Software Handbook) をご参照ください。

アナライト

リガンドを固定化したセンサーチップに対して、リガンドとの結合を測定する目的で添加す る分子を指します。血清や培養上清等のクルード(crude)なサンプルを使用できますが、不 溶性の粒子等は遠心などで除去してください。反応速度定数や解離定数算出を目的とした実 験の場合は、アナライトの精製度が高く、モル濃度が既知である必要があります。

アナライトの調製

ランニング緩衝液で希釈してください。希釈できない場合は、ゲルろ過等を使用し、 ランニング緩衝液を用いて緩衝液交換するか、ランニング緩衝液自体をアナライト 溶解液条件に合わせることが必要となります。緩衝液が異なる場合には、溶液効果 (Bulk Effect:ランニング緩衝液と添加溶液(アナライトなど)の密度の差により発 生するレスポンスの差)が発生します。反応速度定数や解離定数の算出を目的とし た実験においては、結合領域(アナライト溶解液)と解離領域(ランニング緩衝液) が異なる緩衝液組成条件下の測定になり、解析結果に影響を与える可能性がありま す。

アナライト濃度は結合の強さや分子量にもよりますが、数十 ng/ml~数百 μ g/ml で測 定します。反応速度定数を算出する場合には、予想される K₀ (解離定数) 値濃度の 1/10~10 倍の濃度範囲で解析すると良好な結果が得られます。予備検討時は、結合 が弱いことや再生条件 (リガンドに結合したアナライトを溶出し、リガンド固定化 表面を固定化直後の状態に再生する操作)を検討する必要性を考慮し、高濃度 (タン パク質アナライトの場合、数~数十 μ g/ml)を用いるのが望ましいです。

リファレンスセル

溶液効果および非特異的吸着を差し引くために、必ずリファレンスセル(Fc1 または Fc3) へ もアナライトを添加してください。リファレンスセルは実験目的に応じて、未処理のセル、 活性化・ブロッキングセル、ネガティブコントロール固定化セルなどを利用します。

再生溶液

リガンドに結合したアナライトを強制的に解離させる操作を再生といいます。解離が速い相 互作用では、ランニング緩衝液が流れることで、短時間でアナライトが完全に解離するため 再生の必要がありません。解離速度が遅い相互作用の場合には、適当な塩、酸、アルカリ溶液 をアナライト結合表面に 30 秒~1 分間添加し再生します。至適な再生条件(どの溶液で何分 間、何回添加するか)は、分子間ごとに異なるため、その都度検討が必要となります。

理想的な再生条件

リガンドの活性が失われない条件 アナライトを完全に解離する条件 リガンドがセンサーチップ表面から遊離しない条件

補足 4-1. 再生溶液の種類

再生溶液は通常以下のようなものが使用されます。検討の際にはマイルドな条件から検討し てください(塩溶液→酸溶液→アルカリ溶液)。添加時間は、1分以内で検討します。

試薬		濃度あるいは pH
 塩		
NaCl		< 2 M
10 mN	I GIy-HCI	> pH 1.5
HCI		< 100 mM
Phosp	horic acid	< 100 mM
		~ 20 70
アルカリ条件		
10 mN	I Gly-NaOH	< pH 12
NaOH		< 100 mM
Ethan	blamine	< 100 mM
Ethan	blamine-HCl	< 1 M
キレート剤	多価カチオン依存性反応の場合	
EDTA		< 0.35 M
 界面活性剤		
Surfac	tant P-20 (Tween 20)	< 5 %
Triton	X-100	< 5 %
SDS		< 0.5 %
Octylg	lucoside	< 40 mM
有機溶媒		
Aceto	nitrile	< 20%
DMSO		< 8%
Ethyle	ne glycol in HBS Buffer	< 50%
Ethan	bl	< 20%
Form a	amide	< 40%
 変性剤		
Guani	line-HCI	< 5M
Urea		< 8M

Biacore[®]S200 日本語取扱説明書

```
スタートスクリーンのアイコン 🧷 をクリックします。
```

	\downarrow		
🔚 Manual Run			X
Flow			Reagent Rack 2
Elow rate: 30 (μl/min)			
Flow path			
Detection in flow cell(s): 3,4		<u>R</u> eference subtraction:	
○ 📑 Flow path 1 ○ 📑	Flow path 1-2	none 💌	
○	Flow path 3-4	4-3 💌	None
○ 📕 Flow path 3 ○ 🚍	Flow path 1-2-3-4	none 🔽	
Flow path 4			
Help Eject Rack			<u>S</u> tart <u>C</u> lose

流速(Flow rate)(30 µl/min)を入力します。Flow path でアナライトを添加するリファレンスセルと固定化セルを選択します。必ず、Reference subtraction でリファレンスセルの差し引きを設定します。(選択肢として 2-1, 4-3 または、2-1, 3-1, 4-1 があります。)
 Rack の種類を選択し、Start をクリックします。

Save in: T100manual C D' C D' C T100manual C D' C D' C T100manual C D' C D	
Immobilization of PrteinA.blr manual.blr pHscouting.blr	Save in: 📔
puter	My Recent Documents Desktop My Documents My Computer

測定結果の保存先を指定し、File name を入力して Save をクリックします。

センサーグラムが表示され、測定が開始しま	す	0
----------------------	---	---

🐻 Biacore T200 Control Softwa	re -	[regen	eratio	on check	c.blr]											
🔛 File Edit View Command	s	Run 1	Tools	Help												- 🕫 🗙
<u> </u>	4		Cycle:	1	- 0	iurve: -	Sensorgra	am Fc=3				• //邇 • /				
斧ᄣ▎ᄽᄽ▏▋▏ᠿ▕▋▖ ▙▎▞▖▙▖▏▋	F	⁴⁰⁰⁰⁰]	[🗖 L	ock scale
✔ 🏝 New Cycle 30 4-3		35000 -											_			
		30000 -														
		25000 -	-													
	8	20000 -	-													
	Respor	15000 -														
		5000 -														
		0 -														
		-5000 -	-													
		-10000 -												· · ·		
		C)	5		10	1	5	20	25 Time	3	30	35	40	45	50 S
	F	c Time	Win	idow Ab	sResp	SD LF	SD Slop	e RelRe	esp Basel	ine Id			Keyw	ords in cycle 1	Value	-
	Γ															
													N. S.			
Flow: 30 Flow Path: 3,4																
Online - COM1 Temp	erat	ure: 25.0	0 °C	P	Running r	manual ru	n									
Sample compartment temperature - curre	ent:	25 °⊂ se	et: 25 °	C F	Run time	: 1 min										.::

補足 4-2. センサーグラムの表示変更					
View \rightarrow Show Only Current Curve					
選択したセンサーグラムを1本表示します。					
右上のカーブリストから、表示するセンサーグラムを選択します。					
View \rightarrow Show All Curves					
すべてのセンサーグラムを表示します。					
View $ ightarrow$ Show Curves of Same Type					
センサーグラムを種類別に表示します。					
右上のカーブリストから、各フローセルのセンサーグラムもしくは差し引きセンサ					
ーグラムのいずれかを選択して表示することができます。					

↓ Inject command アイコン (ダ) ;赤色) または Menu bar の Commands→Inject…を選択し ます。

		Ļ	
Inject			
Vial/well <u>p</u> osition:	R2 B1 🕞		ОК
<u>C</u> ontact time:	120	(s)	Cancel
			<u>H</u> elp
Minimum required v	/olume in vial/v	vell for this injec	tion: 88 (μl)

Biacore[®]S200 日本語取扱説明書 アナライトの位置(**Vial/well position**)および、添加時間(**contact time**)60~120 秒を入力 すると、**Inject** ダイアログの右下に必要なサンプル量が表示されます。

一旦、Cancel をクリックし、Eject rack tray アイコン(□→)または Menu bar の Commands →Eject Rack を選択します。ラックトレイを取り出して、アナライトを分注したバイアルを セットします。ラックトレイを再び本体に戻して OK をクリックします。

Inject command アイコンを選択します。

アナライトの位置および添加時間(s)を入力します。**OK**をクリックします。

アナライトの結合を確認します。再生の必要がある場合には引き続き検討します。 Regeneration command アイコン(ジー ; 青色)または Menu bar の Commands→ Regeneration...を選択します。

 \downarrow

再生溶液の位置および添加時間(30~60s)を入力して、OK をクリックします。

(再生溶液をセットしていない場合には、必要容量を確認後、一旦、**Cancel**をクリックして バイアルをセットします。)

レポートポイントまたはリファレンスラインウィンドウを利用して、再生溶液添加後のレス ポンス (RU) が、アナライト添加前のレスポンス (RU) に近いかどうかを確認します。 不十分な場合には、引き続き検討します。

 \downarrow

固定化リガンドの結合活性および結合レスポンスの再現性を確認します。

New Cycle アイコン () アイコンが並んでいる下段左から1番目)をクリックし、測定サ イクルを切り替えます。同濃度のアナライトを添加し、前回のアナライト結合レスポンスと 比較してください。引き続き再生します。 すべての検討が終了したら、End Manual run アイコン(└▲))または Menu bar の Commands →End Run をクリックします。装置は自動的に Standby flow 状態になります。 測定データは、始めに入力したファイル名で自動的に保存されます。

補足 4-3. リファレンスウィンドウを利用した再生の確認方法

マウスのカーソル(矢印)をリファレンスラインの縦線上に移動後、マウスの左クリック& ドラッグし、ベースラインを取りたい時間に移動します。もしくはベースラインを取りたい 場所のセンサーグラム上の位置でカーソルをクリックし、リファレンスラインを移動します。

View → Base Line をクリックする(もしくは F9 キーを押す)と、リファレンスラインウィ ンドウのレスポンスが相対値 0 となります。リファレンスラインの縦軸にもう一度カーソル をあわせ、左クリック&ドラッグし移動させると、リファレンスウィンドウにベースライン として設定した位置からのレスポンスが表示されます。

5. 相互作用測定

実験目的に応じたテンプレートを使用して、サンプル名、添加情報および再生条件等、必要 事項を入力して測定メソッドを組み立てることができます。

この章では、反応速度定数および解離定数算出が目的のテンプレート(シングルサイクル法) を利用した基本的な相互作用測定について紹介します。その他アプリケーションの測定方 法および解析手法は、「Biacore S200 日本語取扱説明書 –応用編-」をご覧ください。メソッ ド編集方法の詳細は 6 章を参照してください。

Binding Screen テンプレート

5-1. 反応速度定数・解離定数の算出

マルチサイクル法とシングルサイクル法

1 濃度のアナライト添加とリガンドの再生操作を1 サイクルとして、濃度が異なるアナライトを繰り返し測定し、得られたセンサーグラムから反応速度定数・解離定数を算出する方法をマルチサイクル法といいます。一方、異なるアナライト濃度系列を低濃度側から連続添加し、得られたセンサーグラムを利用して反応速度定数・解離定数を算出する方法をシングルサイクル法といいます。

マルチサイクル法

シングルサイクル法

なお、シングルサイクル法でも再生を実施して、多サンプル測定を行うこともできます。シ ングルサイクル法では1サイクルで、最大9濃度を連続添加できます。

アフィニティーとカイネティクス

分子同士が相互作用する時には、両者にはアフィニティー(親和性)があると表現します。 解離定数は、アフィニティーの強さを表す尺度として一般的に使用され、K₀(単位 M)とし て記述されます。その逆数 1/K_D(=K_A、単位 1/M)が用いられることもあります。解離定数 は、A+B⇔ABの 1:1 Binding モデルでは、反応の平衡状態で、K_D = [A] [B] / [AB] と定義 されます。形成される複合体の割合が多いほど、つまり、この数値が小さいほどアフィニテ ィーは強いと表現できます。Biacore を用いたカイネティクス解析では、アフィニティーは、 その分子間の反応速度定数から算出します ($K_D = k_d / k_a$)。速い結合および遅い解離の相互 作用ほど、アフィニティーは強くなります。これら反応速度(カイネティクス)に関するパ ラメータは、結合速度定数 (k_a 、単位 M⁻¹s⁻¹)、解離速度定数 (k_d 、単位 s⁻¹) として表現され ます。

 $K_{\rm D} = k_d / k_a$ $K_{\rm A} = k_a / k_d$

解離定数(K<u>p</u>)、反応速度定数(*k_a、k_d*)の算出方法

カイネティクス解析では、得られたセンサーグラムに直接反応速度式をカーブフィッティングさせ、非線形最小二乗近似法により定数を導き出します(Kinetics 解析)。

アフィニティーの弱い (≒結合解離が速い) 相互作用の場合、反応はきわめて速く平衡状態 (Req) へと移行しますが、複合体の安定性は悪いため、センサーグラムは『箱型』となり ます。結合領域および解離領域はきわめて短く、カーブフィッティングによる反応速度定数 の算出は困難です。

アフィニティーが弱い反応						
 						

カーブフィッティングによる解析

Req vs C のプロットからの平衡値解析

このような場合、アナライト濃度(C)に対する平衡値(Req)のプロットから、親和定数 (K_A)あるいは解離定数(K_D)を算出します(Affinity 解析)。平衡状態では、以下の関係式 が成り立ちます。

Biacore[®]S200 日本語取扱説明書

至適アナライト濃度

良好な結果を得るためには、予想される解離定数(K_D)値の 1/10~10倍の濃度範囲で 5 濃 度程度測定します。解離定数値が不明な場合には、1nM~1µMの範囲で、5 倍希釈系列の 5 濃度のアナライトで測定および解析をおこない、算出された暫定的な K_D値から至適濃度範 囲を求めるのが望ましいです。その場合、再生ができるのであれば、リガンドを再生して、 至適アナライト濃度で再測定できます。再生ができないのであれば、リガンドを新しいフロ ーセルに固定化し、至適アナライト濃度で再測定してください。 また、濃度 0 についてもアナライトと同一条件で測定します。

至適な流速

<u>30</u>µl/min 以上の高流速に設定します。

アナライト添加時間と解離時間

通常は、添加2分程度、解離2分程度で測定します。ただし、結合速度が遅く結合領域のセンサーグラムが直線的な場合には、カーブが得られるよう添加時間を5~10分程度にします。また、解離速度が遅く、解離領域の傾きがほとんど確認できない場合には、解離時間を10~30分程度で測定します。

5-2. テンプレートメソッドの実行

Toolbar の Home アイコン (合) または Menu bar の Run \rightarrow Template...をクリックしてス タートスクリーンに戻ります。

ここでは、直接固定化したリガンドとアナライトとのシングルサイクル法について紹介します。

Biacore Templates → Kinetics/affinity → Antibody/General → Kinetics/Affinity → Kinetics single cycle を選択し、ダブルクリックまたは Open...をクリックします。以前にテンプレートを C:¥Bia Users¥Templates フォルダに保存している場合は、右側の My Templates 一覧表に表示されます。別フォルダに保存したテンプレートは、Browse...をクリックして選択します。

🔤 Method Builder - Mai	n	
Overvie <u>w</u>	Assay steps	General settings
General Settings	Startup [Startup] Startup 3 times as entered.	Concentration unit = nM Data collection rate = 10Hz Sample compartment temperature = 25 °C Detection = Dual
Cycle Types	Sample [Sample] Sample 1 time as entered.	Settings for assay step "Startup"
Verfication		Temperature = 25 °C Buffer = A
Setup <u>R</u> un		Settings for cycle type "Startup" Sample 1: varies by cycle, 60s, 60s Regeneration 1: Reg solution, 30s
		⊕ Report points
	1	Expand All Collapse Al
Help	Save Save de	Close

 \downarrow

Method Builder の Main ダイアログが表示され、Overview 画面に全体の設定内容が表示されます。ここでは変更項目について紹介します。詳細は6章を参照してください。

General Settings をクリックします。

🔤 Method Builder - Main		= ×	
Overview Image: Comparison of the start General Settings Image: Comparison of the start Image: Data collection rate Image: Comparison of the start Image: Image: Data collection rate Image: Comparison of the start Image: Image: Data collection rate Image: Comparison of the start Image:			
Lypes Miscellaneous settings Verification Concentration unit Image: Setup Bun Position Name A B C			
After run Specify analysis temperature after run:			
Help Save Save As	<u>_</u>	lose	

1 Data Collection rate

10Hz を選択します。

2 Detection

検出モードを以下の3つ(Single, Dual, Multi)から選択します。 実際に使用するセルの設定は、Setup Run 以降で行います。

Single 1, 2, 3, 4

Dual 1,2、3,4、2-1、4-3

Multi 1,2,3,4、2-1,4-3、2-1,3-1,4-1

3 Sample compartment temperature

サンプルコンパートメントの温度(4~45℃)を設定します。

(4) Concentration unit

アッセイ全体を通して用いる濃度単位を選択します。

5 Buffer settings

使用するランニング緩衝液名を入力します。

6 After run

チェックを入れておくと、全測定が終了した後に、センサー表面の温度が指定した 温度に自動変更されます。 設定後、Assay Steps をクリックします。

Startup を選択します。

🔤 Method Builder - Ma	sin 💿 🖸 💌
Overview General Settings Assay Steps Cycle Types Verfication	Image: New Startup Delete Startup Image: Startup
Setup <u>B</u> un	Cycle Run List
	Base settings Recurrence Name: Statup Purpose: Statup Connect to cycle type: Statup Distribute 1 (a) Occurrences evenly Distribute 1 (a) Distribute 1 (a) Distribute 1 (a)
	Assay step preparations Temperature: 25 Buffer: A Random Number of replicates Buffer: A Random Number of replicates Buffer: A Random Random
Help	Save Save As Qose

Number of replicates

Times

ベースライン安定化のためのスタートアップの測定回 数を指定します。3回以上を推奨します。

 \downarrow

Cycle Types をクリックします。

🔤 Method Builder - Main	
Image: Setup Bun Image: Setup Bun Setup Bun Image: Setup Bun Setup Bun Sample 1 Regeneration 1 Setup Bun	
Help Save Save As	

Startup をクリックします。ダミーランを設定します。

Injections タブのリストから Sample 1 を選択後、画面右で詳細設定をおこないます。

Туре	Low Sample consumption が選択されています。		
contact time	60 (s)と入力されています。変更の必要はありません。		
Dissociation time	60 (s)と入力されています。変更の必要はありません。		
Flow rate	30 μl/min		
Flow path	Both または Multi を選択します。		

同様に、Injections タブのリストから Regeneration 1 を選択後、画面右で詳細設定をおこ

な

います。	
Regeneration solution	再生溶液名を入力します。
Contact time	至適な添加時間を入力します。
Flow rate	30 µl/min
Flow path	Both または Multi を選択します。

なお、再生しない場合には、Injections タブのリストから Regeneration 1 を選択後、Remove をクリックして削除してください。

🤤 Method Builder - Main	
Overview Cycle types General Settings Sample Assay Steps Cycle Types Cycle Types Ename	Description of selected cycle type This cycle type is used in the Sample step. It contains injections of sample and regeneration. The sample injection type is Single cycle kinetics.
Verification Injections Report Points Capture Settings for Sample 1 Sample 1 Sample solution: Is variable Cogcentrations per cycle: Solution: Is variable Contact time: 120 (s) Dissociation time: 600 (s) Row pate: 30 (ul/min) Bow path: Both Egtra wash after injection with: Stabilization period:	Method Variables Set property as variable Sample solution Contact time (s) Dissociation time (s) Row rate (µ/min)
Help Save Save As	Qose

Injections タブのリストから Sample 1 を選択後、画面右で詳細設定をおこないます。

Туре	Single cycle kinetics が選択されています。		
	(マルチサイクル法では、High performance を使用)		
Concentrations per cycle	アナライトの濃度数を選択します。最大 9 濃度。		
contact time	アナライト添加時間を入力します(s)。		
Dissociation time	最終濃度添加後の解離時間を入力します(s)。		
	(各濃度添加後の解離時間は指定できません。)		
Flow rate	流速(μl/min)。通常、30 μl/min。		
Flow path	Both または Multi を選択します。		
Extra wash after injection with	チェックを入れると指定溶液でアナライト添加後に流		
	路内を洗浄します。センサーチップ表面には流れません。		
Stabilization period	チェックを入れると指定した解離時間後に、指定した		
	時間ベースライン安定化のための待機時間を設定する		
	ことができます。		

同様に、Injections タブのリストから Regeneration 1 を選択後、画面右で詳細設定をおこな

います。再生しない場合には、Injections タブのリストから Regeneration 1 を選択後、 Remove をクリックして削除してください。 **Verification** をクリックします。

	🔤 Method Builder -	Main	- 2 🛛
	Overvie <u>w</u>	Verification results	
	General Settings	The method has been verified and can be used to set up a run.	
	Auren Chana		
	Assay Steps		
	<u>Cucle Types</u>		
(<u>V</u> erification		
	Setup <u>H</u> un		
		3	>
	Help	Save Save As	Close

メソッドの設定に不備が無ければ"The Method has been verified and can be used to set up a run."と表示されます。間違いがある場合は該当部分が表示されるので、指示に従って修正します。確認後、Setup Run をクリックします。

 \downarrow

🏧 Method Bu	ilder - Detection	×
Detection		
<u>F</u> low path:	2-1 V 1,2 3,4 2-1	
<u>H</u> elp	4-3ckext >lose	

適切な Flow path を選択し、Next >をクリックします。必ず、リファレンスを差し引いた Flow path を選択してください。

 \downarrow

Meth	nod Builder - Variable	5						
ssav	steps							
tart	up							
Samp	ole							
ariab	le values for Assay Step	o Sample						
				Sample 1				
	Sample solution	Conc (1) (nM)	Conc (2) (nM)	Conc (3) (nM)	Conc (4) (nM)	Conc (5) (nM)	MW (Da)	
	mouse IgG	0	0	0	0	0		
2	mouse IgG	0	0	0	0	0		
3	mouse IgG	8.25	16.5	33	66	133		
	R	L						
	7							
		▶ 測定し↑	といサンプル	を追加します	+。			
		_						
_		1						1
He	lp Import					< <u>B</u> ack	<u>N</u> ext >	Close

Startup、Sample をそれぞれクリックし、テーブルにサンプル情報を入力します。

Sample Solution	アナライトの名称
Conc (nM)	アナライト濃度
	<u>Conc(1)→Conc(5)の順番で低濃度から順番に入力し</u>
	てください
MW(Da)	アナライトの分子量

必ず、各サンプル測定前にアナライトゼロ濃度のサイクルを2回以上実施してください。 (解析時にサンプルのセンサーグラムから差し引くダブルリファレンスで使用します。) Startup では、ランニングバッファーを添加します。

全サンプル情報を入力後、Next >をクリックします。

Cycle Assay step nam L Startup 2 Startup 3 Startup 4 Sample 5 Sample 5 Sample	buffer buffer buffer buffer mouse IgG mouse IgG mouse IgG	Sample 1 MW (Da)	Sample 1 Conc (1) (nM) 0 8.25	Sample 1 Conc (2) (1 0 16.5
Startup Startup Startup Startup Sample Sample Sample Sample	buffer buffer mouse IgG mouse IgG mouse IgG		0 0 8.25	0 0 16.5
2 Startup 3 Startup 4 Sample 5 Sample 5 Sample	buffer buffer mouse IgG mouse IgG mouse IgG		0 0 8.25	0 0 16.5
3 Startup 4 Sample 5 Sample 5 Sample	buffer mouse IgG mouse IgG mouse IgG		0 0 8.25	0 0 16.5
4 Sample 5 Sample 5 Sample	mouse IgG mouse IgG mouse IgG		0 8.25	0 0 16.5
5 Sample Sample	mouse IgG mouse IgG		0 8.25	0 16.5
5 Sample	mouse IgG		8.25	16.5
				•

測定サイクルリストが表示されます。Overview で、全サイクル内容を確認できます。 Next >をクリックします。

	\downarrow
🔤 Method Builder - System Preparatio	ns 💽
Prime before run Nomalize detector	
Temperature settings Analysis temperature: Sample compartment temperature:	25 (°C) 25 (°C)
Help	< <u>B</u> ack Next > Qose

測定を始める前に、**Prime**を実施する場合には、Prime before run にチェックを入れます。 Next >をクリックします。

Method Builder - Rack Positions						
Reagent Rack 2	Position	Volume (µl)	Content	Туре	Sample 1 Conc (nM)	Sample 1 MW (Da)
()00()00()	R1 A1	118	mouse IgG	Sample	0	
	R1 A2	118	mouse IgG	Sample	0	
	R1 A3	118	mouse IgG	Sample	0	
	R1 A4	118	mouse IgG	Sample	0	
	R1 A5	118	mouse IgG	Sample	0	
	R1 A6	118	mouse IgG	Sample	0	
	R1 A7	118	mouse IgG	Sample	0	
	R1 A8	118	mouse IgG	Sample	0	
ABCDEFG	R1 A9	118	mouse IgG	Sample	0	
96 Well Microplate	R1 A10	118	mouse IgG	Sample	0	
	R1 A11	118	mouse IgG	Sample	8.25	
****	R1 A12	118	mouse IgG	Sample	16.5	
	R1 B1	118	mouse IgG	Sample	33	
00000000	R1 B2	118	mouse IgG	Sample	66	
	R1 B3	118	mouse IgG	Sample	133	
	R1 C1	154	buffer	Startup		
	R2 A1	682	Reg solution	Regeneration		
∗○○○○○○○○						
70000000						
SOOOOOOO						
↓ ○ ○○○○○○						
² 0000000						
10000000						
A B C D E F G H						
Help Menu				< <u>B</u> ack	Next >	Close

右側の表でサンプルの位置とサンプル量(µl)を確認します。表中のサンプルをクリックす るとそれに対応するラック上の位置が強調表示されます。位置と容量を確認しながらバイ アルおよびサンプルをラックにセットします。

補足 5-1. サンプル位置の変更

サンプル位置は、上記画面に切り替わった時点で自動的に設定されます。あらかじめサンプ ル位置が決まっているプレートを使用する場合は、画面左下の Menu → Export Positions... を実行し、サンプル位置をタブ区切りのテキストファイルとして保存します。必要事項を変 更した後ファイルを保存し、Menu → Simple Position Import...でそのファイルを読み込む と、サンプル位置が変更されます。

補足 5-2. 同一バイアルからのサンプリング設定

サンプル位置は、同一サンプルであっても、添加回数分、分注して配置されるように組まれ ています(例えば同一の Control Sample であっても、R1A1 から R1A12 に 12 バイアルに分 けてセットするように指示されます)。同一サンプルを同バイアルから使用したい場合はプ ーリング機能を利用します。

なお、Automatic Positioning ダイアログでは色やバイアルのサイズの設定もできるので、 これらも必要に応じて適宜設定を変更してください。 **Eject Rack** をクリックして、**Rack tray port** を開きます。

ラックトレイを奥まで挿入し、OK をクリックします。Eject Rack Tray ダイアログが閉じた後、Rack Positions ダイアログ右下の Next >をクリックします。

		\checkmark	
🔤 Method Builder - Prep	are Run Protocol		
Tahoma	- 10 - B <i>I</i> <u>U</u>	[
Prepare Run Proto Make sure the correct Make sure all samply Positions setup. (Via Place the buffer(s) or Note! Standby after r Make sure there is fr If necessary, empty	COL ct sensor chip is docked es & reagents are loade als should be sealed wit n the left hand tray and run will use buffer A. resh water in the water b the waste bottle before	d. Id in the rack and micropla h rubber caps and microp insert the correct tubing(s pottle on the right hand tra start of the run.	ate according to the Rack late with adhesive foil.)), see below. y.
Estimated run time: 1 h 45 Estimated buffer consumption Buffer A At least 100 ml plus 65 ml/day for standby after run	ion: Not in use	statements, temperature change	es and standby flow)
Help Menu	•	< <u>B</u> ac	k <u>S</u> tart <u>O</u> lose

基本的な注意事項、測定時間、必要なランニング緩衝液量が表示されます。 Start をクリックします。

設定したテンプレートを保存するかどうか、メッセージが表示されます。保存する場合は、 Save as で C:¥Bia Users¥Templates フォルダまたは Bia Users の各自のフォルダに保存しま す。保存しない場合は、Don't Save を選択します。

↓

 \downarrow
Save Results F	rom Run As					? 🛛
Save in:	CSK		~	G 🦻	ب 😥 📂	
My Recent Documents	immobilization c	f antibody.blr				
My Documents						
My Computer						
	File name:	SCK_antibdy antigen			~	Save
My Network	Save as type:	Result file (*.blr)			~	Cancel

Save in:に測定結果の保存先を設定し、File name にファイル名を入力して、Save すると測 定がスタートします。

終了後、装置は Standby flow 状態になります。

↓ 測定データは入力したファイル名で自動保存され、Biacore S200 Evaluation Software が自動 で起動します。

補足 5-3. 実行中のテンプレート緊急停止
Run→Stop Run…をクリックします。
Biacore S200
This will stop the run
Help Stop Run Cancel
ボックス中の Stop Run をクリックします。
↓
Run Stopped
Finishing current cycle, please wait
Abort cycle by [Ctrl]+[Break]
実行中の測定サイクルが終了するまで待機し、終了します。
上記ウインドウが開いている状態で、ただちにテンプレートを終了したい場合には、画面の
表示に従い、キーボードの[Ctrl]キーと[Break]キーを同時に押します。
Biacore S200
Do you want to wash the system?
Yes No
装置をランニング緩衝液で洗浄する必要があれば、Yes を選択します。必要がなければ No
を選択します。
終了した時点までのデータが Biacore S200 Evaluation Software に移行します。

<u>5-3. 解析前のデータ確認</u>

メソッドを用いた測定テンプレート終了後、Evaluation ソフトウェアは自動的に立ち上がり、 自動保存された取得データが開かれます。

補足 5-4. サンプル情報の変更

サンプル濃度および濃度単位、サンプルの名称などに入力ミスがあった場合は、解析を実行 する前に Keyword table...で変更します。画面左 Data の Keyword Table をクリックします。 リガンド名、分子量の変更は、右下の Edit Chip Information...をクリックして、Edit Chip Information ウインドウで変更します。(測定データファイルの情報は変更できません。)

- no	ssay step purpose	Sample	Conc (nM)	MW (Da)
1	Itioning			
2 start	un	buffer		
3 itat	up	buffer		
4 Start	up	buffer		
5 am	ple	antigen1	1.1	11500
6 am	ple	antigen1	2.2	11500
7 Sam	ple	antigen1	4.3	11500
8 am	ple	antigen1	8.5	11500
9 am	ple	antigen1	17	11500
10 am	ple	antigen1	1.1	11500
11 am	ple	antigen1	0	11500
12 am	ple	antigen1	0	11500
13 am	ple	antigen2	1.1	11500
14 am	ple	antigen2	2.2	11500
15 am	ple	antigen2	4.3	11500
16 am	ple	antigen2	8.5	11500
17 Jam	ple	antigen2	17	11500
18 am	ple	antigen2	1.1	11500
19 am	ple	antigen2	0	11500
20 am	ple	antigen3	0	11500
21 am	ple	antigen3	1.1	11500
22 iam	ple	antigen3	2.2	11500
23 am	ple	antigen3	4.3	11500
24 am	ple	antigen3	8.5	11500
25 am	ple	antigen3	17	11500
26 am	ple	antigen3	1.1	11500
27 am	ple	antigen3	0	11500
20	ole	antigen3	0	11500

補足 5-5. 画面の詞	兑明
🗲 Biacore S200 Evaluation S	oftware 1.0 [BC T200 - Kinetic screen SCK.blr]
File Evaluation Tools Wind	dow Help
Data	🗠 All sensorgrams
Open	Curve Name: Fcr43 Tell Curve Name: Fcr43 Tods RU Sensorgram Tods
Append	
Keyword Table	
Solvent Correction	
Inspection	soo -
Evaluation	
Remove Edit	
Sensorgram All sensorgrams GC Plot	200 -
Baseline: Capture Baseline: Sample Binding level	
Binding stability Binding to reference Peport Point Table	
	Work area
I	
Menu bar	すべての作業コマンドを含む各種メニューを表示
画面左の Navigation	Panel には、主に使用する機能を一覧化しています。
Data	
Open	データファイルの呼び込み
Append	データファイルの追加
Keyword Tab	ole キーワード(サンプル名、濃度など)のテーブル表示
Solvent Corr	rection 有機溶媒使用時の溶媒補正
Inspection	
Sensorgram	センサーグラムウインドウの追加
QC Plot	クオリティーチェック用 Plot の追加
Evaluation	冬種解析機能の選択
Evaluation Explorer	9 へしの測止ナーダ、 脾饥後ナーダの衣示

解析前には、センサーグラムおよび QC Plot を確認して、センサーグラムの乱れ、非特異的 結合の有無や再現性などを確認してから解析に進みます。

なお、センサーグラムの乱れなどで、解析に持ち込みたくないサンプルがある場合には、QC Plot のプロットか QC Plot 右テーブルの該当サンプル上で右クリックして Export Curves を選 択すると、その後の解析から除くことができます。(補足 5-7 参照)

Report Point を追加する場合は、Menu bar の **Tools**→**Custom Report Points** でおこなえます。

0						
M Curve Name: Fo	=2·1 センサーイ	A M M T グラムの選却	ssay Step Purpose 7	x <0verlay>[▼]₩	Cycle: <0verlay>	V
			<u>`</u>			
Curve Name:	Fc=2-1		₯≝もしく(↓ [●] をクリ、	ックし、目的のフ	'ローセルを
	#				ち使用します	
抓しより。 俊	剱のノロ-	ーセルを向い	すに迭択りる	场合は、 🕒	を使用しまり。	
		Curv	e Name: Fc=2-1	•		
		Cur	ve Name 🔺	Curve Type		
		Fc=2	Acti	ve		
		. Fc=2	2-1 Ref	erenceSubtracted		
キーボードの	Ctrl =-	を押したが				
		CTT D'AD	ら、日的の、	7ローセルを	クリックします。	理症したノ
ニャルを選切	する担合		ら、日的の、 いドラッグ場	クローセルを 作によってま	クリックします。 選択可能です	浬 続したノ
ーセルを選択 特定のセンサ �� Cycle: <0verl	する場合(<u>ーグラム(</u> lay>	といてしなが は、マウス0 <u>の選択</u> ▼₪ _の	ら、日的のノ Dドラッグ操 か	/ローセルを 作によっても クリックし、	クリックします。 5選択可能です。 目的のサイクル [;]	連続したノを選択します
ーセルを選択 特定のセンサ	する場合(ーグラム(lay> ルを同時(と)」「じなが よ、マウスの <u>の選択</u> こ選択する場	ら、日的のノ Dドラッグ操 M か M を	/ ローセルを 作によっても クリックし、 を使用します	クリックします。 う選択可能です。 目的のサイクル [;] 。	連続したノを選択します
ーセルを選択 特定のセンサ 《 Cycle: < Overl 複数のサイク	する場合(<u>ーグラム(</u> lay> ルを同時(と)」「 じなが よ、マウスの <u>の選択</u> で⊮の こ選択する均 Assay Step Purp	ら、日的のシ Dドラッグ操 MMMを ま 含は、 マ ; sse: <0verlay> ▼	クローセルを 作によっても クリックし、 を使用します 逊 <mark>廵</mark> Cycle: <0	クリックします。 p選択可能です。 目的のサイクル ² 。 Iverlay>	連続したノを選択します
ーセルを選択 特定のセンサ ④ Cycle: <0 verl 複数のサイク	する場合(ーグラム(lay> ルを同時(マト) べ Included	といっしょい ま、マウスの <u>の選択</u> こ選択する場 Assay Step Purp Cycle# Assa	ら、日的のノ Dドラッグ操 Martin かいまま。 Sec < Overlay、 Ty Step Purpose	クローセルを 作によっても クリックし、 を使用します ●● ≪ Cycle: <c Sample Name</c 	クリックします。 p選択可能です。 目的のサイクル 。 Iverlay> Conc. マ MW	連続したノを選択します
ーセルを選択 特定のセンサ ④ Cycle: <0verl 複数のサイク	する場合(<u>ーグラム(</u> lay> ルを同時(<mark>ていくべ Included</mark> Yes	といっしょが ま、マウスの <u>の選択</u> でいの こ選択する場 Assay Step Purp Cycle# Assa 1 Startu 2 Startu	ら、日的のシ ンドラッグ操 M か か を 高合は、 マ y Step Purpose	クローセルを 作によっても クリックし、 を使用します ●● ≪ Cycle: <0 Sample Name Buffer Buffer	クリックします。 う選択可能です。 目的のサイクル 。 verlay> てのC. マ MW	連続したノを選択します
ーセルを選択 特定のセンサ ✔ Cycle: <0 verl 複数のサイク	する場合(<u>ーグラム(</u> lay> ルを同時(<u>▼ Included</u> Yes Yes	と」」「となが ま、マウスの の選択 ▼ ● の こ選択する場 Assay Step Purp Cycle# Assa 1 Startu 2 Startu 3 Startu	ら、日的の ンドラッグ操 M か か を 会 は、 マ : y Step Purpose P P	クローセルを 作によっても クリックし、 を使用します MMCycle: <0 Sample Name Buffer Buffer Buffer Buffer	クリックします。 p選択可能です。 目的のサイクル ³ 。 verlay> ▼ Conc. ▼ MW	連続したノを選択します
ーセルを選択 特定のセンサ ① Cycle: <overl 複数のサイク</overl 	する場合(ーグラム(lay> ルを同時(でいいく Yes Yes Yes Yes	というにはなが ま、マウスの <u>の選択</u> でいかの こ選択する場 Assay Step Purp Cycle# Assa 1 Startu 2 Startu 3 Startu 9 Samp	ら、日的のシ ンドラッグ操 M かいを ま 合は、 マ Step Purpose P P P P e	クローセルを 作によっても クリックし、 を使用します ●● 《 Cycle: <0 Sample Name Buffer Buffer Buffer Buffer Beta2micro	クリックします。 う選択可能です。 目的のサイクル: 。 Verlay> <u>Conc. マ MW</u> <u>32</u> 11800	連続したノを選択します
ーセルを選択 特定のセンサ ≪ Cycle: <0verl 複数のサイク	する場合(<u>ーグラム(</u> lay> ルを同時(<mark>マ)) 《</mark> Included Yes Yes Yes Yes	は、マウスの の選択 でいのの こ選択する場 Assay Step Purp Cycle# Assa 1 Startu 3 Startu 9 Sampl 8 Sampl 8 Sampl	ら、日的のシ ンドラッグ操 M か か を 高合は、 マ; see: <0verlay> マ y Step Purpose p p p e e	クローセルを 作によっても 作によっても クリックし、 を使用します W ≪ Cycle: <c Sample Name Buffer Buffer Buffer Buffer Buffer Beta2micro Beta2micro</c 	クリックします。 う選択可能です。 目的のサイクル 。 Verlay> てのC. ▼ MW 32 11800 16 11800 0 10000	連続したノを選択します
ーセルを選択 特定のセンサ ⋘ Cycle: <0 verl 複数のサイク	する場合(<u>ーグラム(</u> lay> ルを同時(<u>▼ Included</u> Yes Yes Yes Yes Yes	と)」「 じ な が ま、マウスの <u>の選択</u> ▼ IPDの こ選択する場 Assay Step Purp Cycle# Assa 1 Startu 2 Startu 3 Startu 9 Sampl 8 Sampl 7 Sampl	ら、日的のシ ンドラッグ操 M かいまた また、で、 S合は、で、 y Step Purpose P P P e e e	クローセルを 作によっても 作によっても クリックし、 を使用します ※ Cycle: <c< b=""> Sample Name Buffer Buffer Buffer Buffer Buffer Buffer Beta2micro Beta2micro Beta2micro</c<>	クリックします。 →選択可能です。 目的のサイクル 。 Verlay> ▼ 11800 16 11800 8 11800	連続したノを選択します
ーセルを選択 特定のセンサ ⋘ Cycle: <0verl 複数のサイク	する場合(<u>ーグラム(</u> lay> ルを同時(マービーベ Yes Yes Yes Yes Yes Yes Yes Yes	と」「しなが よ、マウスの <u>の選択</u> で ♪♪ の こ選択する場 Assay Step Purp Cycle# Assa 1 Startu 2 Startu 3 Startu 9 Sampl 8 Sampl 7 Sampl *	ら、目的のシ ンドラッグ操 の か か か ま を つ set <0verlay> マ y Step Purpose P P P P P E e e e e e ら、目的のシ	クローセルを 作によっても クリックし、 を使用します ♥● ≪ Cycle: <0 Sample Name Buffer Buffer Buffer Buffer Beta2micro Beta2micro Beta2micro Beta2micro	クリックします。 →選択可能です。 目的のサイクル・ 。 verlay> ▼ Conc. ▼ MW 32 11800 16 11800 8 11800 1 ックします。通	連続したフロ
ーセルを選択 特定のセンサ ≪ Cycle: <0 verl 複数のサイク キーボードの	する場合(<u>ーグラム(</u> lay)> ルを同時(マード・ペ 「Included Yes Yes Yes Yes Yes Yes Yes Yes	といっての ま、マウスの <u>の選択</u> ▼ ● の こ選択する場 Assay Step Purp Cycle# Assa Assay Step Purp Cycle# Assa 1 Startu 2 Startu 3 Startu 9 Sampl 8 Sampl 7 Sampl	ら、日的のノ シドラッグ操 ● かいを 書合は、で see <0 verlay>で y Step Purpose p p p e e e e ら、目的のサ	クローセルを 作によっても 作によっても クリックし、 を使用します ● 《 Cycle: <c Sample Name Buffer Buffer Buffer Beta2micro Beta2micro Beta2micro Beta2micro</c 	クリックします。 う選択可能です。 目的のサイクル: 。 verlay> ▼ 【Onc. ▼ MW 32 11800 16 11800 8 11800 8 11800	連続したフロ
ーセルを選択 特定のセンサ ✔ Cycle: <0verl 複数のサイク キーボードの セルを選択す	する場合(一グラム(lay> ルを同時(「Included Yes Yes Yes Yes Yes Yes Ctrl キー る場合は、	は、マウスの う選択 でいのの こ選択する場 Assay Step Purp Cycle# Assa Assay Step Purp Cycle# Assa 1 Startu 2 Startu 3 Startu 9 Sampl 8 Sampl 7 Sampl 6 Sampl 7 Sampl	ら、目的のシ シドラッグ操 M かいまた ま合は、で Step Purpose P P P P P P P P P P P P P	クローセルを 作によっても クリックし、 を使用します ● Cycle: <0 Sample Name Buffer Buffer Beta2micro Beta2micro Beta2micro H イクルをク によっても選	クリックします。 う選択可能です。 目的のサイクル: 。 Verlay> Conc. ▼ MW 32 11800 16 11800 8 11800 リックします。通 試択可能です。	連続したフロ
ーセルを選択 特定のセンサ ④ Cycle: <0verl 複数のサイク キーボードの セルを選択す	する場合(<u>ーグラム(</u> lay> ルを同時(マー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	は、マウスの の選択 マウスの の選択する場 Assay Step Purp Cycle# Assa Assay Step Purp Cycle# Assa Assay Step Purp の 名say Step Purp の 名say Step Purp の 名say Step Purp の の の の の の の の の の の の の	ら、日的のシ シドラッグ操 M か か を 会 合は、 マ ; y Step Purpose p p p e e e ら、目的のサ 、 ラッグ操作	クローセルを 作によっても クリックし、 を使用します ● 《 Cycle: <0 Sample Name Buffer Buffer Buffer Beta2micro Beta2micro Beta2micro Beta2micro	クリックします。 う選択可能です。 目的のサイクル 。 Verlay> ▼ Conc. ▼ MW 32 11800 16 11800 8 11800 リックします。通 銀択可能です。	連続したフロ
ーセルを選択 特定のセンサ ✔ Cycle: <0 verl 複数のサイク キーボードの セルを選択す 色の表示変更	する場合(<u>ーグラム(</u> lay> ルを同時(マトレダイ Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	ま、マウスの の選択 マウスの こ選択する場 Assay Step Purp Cycle# Assa 1 Startu 2 Startu 3 Startu 9 Sampl 8 Sampl 7 Sampl *を押しなが マウスのト	ら、日的のシ ンドラッグ操 のトラッグ操 高合は、 マ sec: <0verlay> y Step Purpose p p p e e e ら、目的のサ 、ラッグ操作	クローセルを 作によっても 作によっても クリックし、 を使用します MCycle: <0 Sample Name Buffer Buffer Buffer Beta2micro Beta2micro Beta2micro H イクルをク によっても選	クリックします。 う選択可能です。 目的のサイクル 。 Verlay> ▼ 【Onc. ▼ MW 32 11800 16 11800 8 11800 リックします。通 銀択可能です。	連続したフロ

補足 5-7. QC Plot を使用したセンサーグラムの確認

解析前に、各種 QC Plot を使用して、解析から除くセンサーグラムの確認と Exclude の実行 ができます。

センサーグラムの確認

確認したいプロット上で、マウス右クリックして、Show Sensorgram をクリックします。 選択したセンサーグラムが別ウインドウで確認できます。

センサーグラムの排除

該当のプロット上で、マウス右クリックして、Exclude Cycle を選択します。プロットが消 え、ウインドウ左のテーブルの該当サンプル情報が赤字に変わります。全 QC Plot に適応さ れます。Exclude を取り消したい場合には、テーブルの該当項目上で右クリックして Include Cycle をクリックします。

<u>5-3. Kinetics 解析</u>

iame:	Kinetics				
Curve Type:	ReferenceSubtracted	✓ Temper	ature: 25	(°C)	
ùrves:	✓ Fc=4-3	🔲 Mul	tiple Rmax		
amples	Sample	Ligand	furve		
	2162	ovid Ditux	Ec=4-2	4	
	2163	ref ovid Ditux	Fc=4-3		Exclude Selected
	2250	ovid Ditux	Fc-4-3		
	2250	vef ovid Ditux	Fc=4-3		
	2360	oxid Pitux	Fc=4-3		
	2360	ref oxid Ritux	Fc=4-3		E <u>x</u> clude All
	2994	oxid Ritux	Fc=4-3		=
	2994	ref oxid Ritux	Fc=4-3		
✓	3116	oxid Ritux	Fc=4-3		
	3116	ref oxid Ritux	Fc=4-3	-	
✓	3117	oxid Ritux	Fc=4-3	***	
	3117	ref oxid Ritux	Fc=4-3	~	
✓	3118	oxid Ritux	Fc=4-3		
✓	3118	ref oxid Ritux	Fc=4-3		
	3121	oxid Ritux	Fc=4-3		~
V					

ナビゲーションパネルの、Evaluation→Kinetics を選択します。

Name

解析結果の名前。必要に応じて変更します。

ReferenceSubtracted(リファレンス差引データ)を選択します。 Curve Type

温度を変えて測定している場合には、解析する温度を選択します。 Temperature

解析に使用するカーブを選択します。 Curve

同一のリガンドを異なる固定化量で固定化してセンサーグラムを取得し Multiple Rmax た場合に、固定化量が異なるデータセットを同時に解析して共通の解析 結果を算出します。

画面下の Table の Include で、解析に進めるサンプルをチェックします。

 \downarrow

78 5. 相互作用測定

画面左に、ゼロ濃度を差し引いたセンサーグラムの一覧が表示されます。表示は View の、Small Thumbnails、Standard Thumbnails、Extended Thumbnails で、並びは Arrange By で変更できます。選択したセンサーグラムの詳細情報は、画面右で確認できます。

ブランクサブトラクション、サンプルサイクルの選択

センサーグラム下の Display Blanks を選択すると、そのサンプル名のゼロ濃度センサーグ

ラム(ブランク)が表示されます。画面下の Included Curves の [◆]を選択するとゼロ濃度 サイクルとサンプルサイクルの一覧を確認できます。ここで、ゼロ濃度および解析に進め るサンプルの選択が可能です。Include のチェックを外すと、解析から除くことができま す。ゼロ濃度サイクルが複数ある場合には、選択したゼロ濃度センサーグラムの平均が差 し引かれます。なお、サンプル名に対してゼロ濃度の測定を行っていない場合には、Table 下の Blanks from other sample series から別サンプルのゼロ濃度を選択できます。この際 には、一番近いサイクルの選択が望ましいです。

<u>センサーグラムのステータス設定</u> 各センサーグラムのステータスを個別に設定できます。 ここでは、次の3つのステータスを設定できます。

Rejected 解析に持ち込まないセンサーグラム(結合なし、乱れが大きいなど)

Cleared デフォルト設定、解析に持ち込むセンサーグラム

ステータスを設定する場合には、画面左の各センサーグラムの Cをクリックして、ステー タスを変更します。または、センサーグラム上で右クリックし、ステータスを選択しま す。

左上の Tools→Hide Rejected で、Reject したセンサーグラムを非表示にできます。

Clear Flags で、Flag を解除できます。

注釈・コメントを設定したい場合には、補足 5-8 を参照ください。

補足 5-8. 注釈・コメントの追加

選択したセンサーグラムに注釈を追加できます。

例えば、センサーグラム確認時に、溶液効果が大きいポイントや R_{max}を超えているポイント に注釈を入れることができます。

画面左上の Tools→Annotations をクリックします。

🖴 Manage Custom Annotation	X	
	Add <u>Annotation</u>	D
	Add Comment	
	<u>D</u> elete	
Save Annotations As Template	Use Annotation Iemplate	
	Cancel	

Add Annotation を選択して、注釈を入力します。また、Annotation を選択した状態で、Add Comment を選択してコメントを追加します。コメントは複数追加できます。 別途、Annotation を追加する場合には、上記操作を繰り返します。

作成した Annotation を保存して、別データの解析時に使用する場合には、下の Save Annotation As Template にチェックを入れます。保存しない場合には、作成した Annotation は実行中のファイル内のみで適用されます。また、最終保存したものがテンプレートとなります。OK をクリックします。

 \downarrow

Annotation を設定する場合には、Thumbnails タブの該当センサーグラム上で右クリックして、Annotations から登録したコメントを選択します。

Result Summary タブのテーブルでも同様に設定できます。Results Summary タブのテーブルの Annotation で、設定したコメントを確認できます。

添加開始・終了時のスパイクノイズを除きたい場合は、画面左上の Tools の Remove Ranges をクリックします。

画面下のスライダーを動かして、解析から除く範囲を設定します。 OK をクリックすると、全てのセンサーグラムに適用されます。

それぞれのセンサーグラムについて、センサーグラムの領域削除を行う場合には、 Thumbnails タブでセンサーグラムを選択後、右上の Tools→Select Data をクリックしま す。(全センサーグラムに対して、同じ領域を一度に削除することはできません。)

Biacore[®]S200 日本語取扱説明書

センサーグラム上で、マウス右クリック、ドラッグで範囲を設定し、Remove Selection を 選択します。選択領域が削除されます。Undo で1つ前のステップに戻れます。 OK をクリックします。

 \downarrow

解析モデルの設定を行います。画面左上の Settings の Fit Settings をクリックします。

Fit Settings				
Model: • 1:1 Binding			<u>•</u> [Parameters
⊂R <u>e</u> place or Add				
📀 F	Re <u>p</u> lace currer	nt fitting		
○ A	Add <u>n</u> ew fitting			
Apply To				
🗹 <u>S</u>	elected	Cleared		
		Elagged		
Action will n	not apply to ac	cepted or rejected s	series.	
		ОК		Cancel

Model 解析モデルを選択します。(補足 5-9 参照)

Parameters選択したモデルの初期値、Fitting 方法変更ウインドウ。(補足 5-10 参照)Replace or Add で、これから実施する解析結果を上書きするか、追加するかを選択できます。

```
Apply To で、選択したモデルを適用するセンサーグラムを選択します。
```

Selected	Thumbnails タブで選択したセンサーグラム
Cleared	ステータスが Cleared の全センサーグラム
Flagged	ステータスが Flagged の全センサーグラム

補足 5-9. 反応モデル

リガンドを B、アナライトを A とします。

 1:1 Binding
 A+B ⇔ AB

 リガンドとアナライトが1分子同士で結合するもっとも単純な反応モデル。

Bivalent Analyte $A + B \Leftrightarrow AB, AB + B \Leftrightarrow AB2$

アナライトが2価もしくはホモ2量体の反応モデル。AB 複合体形成後、リガンド B が2次的に結合する反応。

Heterogeneous Analyte $A1 + B \Leftrightarrow A1B, A2 + B \Leftrightarrow A2B$

競合反応。リガンド上の1種類の結合部位を2種類のアナライトが競合する反応。

Heterogeneous Ligand A + B1 \Leftrightarrow AB1 , A + B2 \Leftrightarrow AB2

アナライトに対して親和性の異なる 2 つの結合部位を持つリガンドにアナライト が並行して結合する反応モデル。

Two state Reaction $A + B \Leftrightarrow AB \Leftrightarrow AB^*$

リガンドとアナライトの 1 分子同士の結合であるが、複合体形成後コンフォメー ション変化を起こす反応モデル。

補足 5-10. パラメータの設定

解析パラメータ(初期値、R_{max}、RI など)の設定条件を変更して解析する場合には、モデル 選択箇所右の Parameters をクリックします。

Fit Fit global		Initial value 1e5	Default
Fit global		1e5	Default
			Dordale
Fit global		1e-2	Default
Fit global		1e-3	Default
Fit global		1e-3	Default
Fit global	-	YMax	Default
Fit global	-	1e8	Default
Fit local	-	YMax/5	Default
	Fit global Fit global Fit global Fit global Fit global Fit local	Fit global Fit global Fit global • Fit global • Fit global •	Fit global 1e-3 Fit global 1e-3 Fit global • YMax Fit global • 1e8 Fit local • YMax/5

初期値の変更

Initial value で解析の初期値を設定できます。センサーグラムの形状から予測される値と初 期値が大きく異なる場合に、至適な値に変更して解析することで False Negative(間違った 解の算出)を回避することができます。

RI 値の変更

箱型に近いセンサーグラムを解析する際に、濃度 0 のセンサーグラムを差し引いているに もかかわらず、センサーグラムの急激なレスポンスの変化を RI(溶液効果)とみなして解析 する場合には、RI をゼロに固定して解析する方法が有効です。この場合は、RI の Fit カラム の▼をクリックし、Constant を選択します。Initial value は自動的に 0 が入力されます。 Fit Constant を選択して、Initial Value に 0(ゼロ)を入力します。

<u>Rmax</u>の解析方法の変更

経時的なリガンドの活性低下や再生の不十分さが原因で、全センサーグラムで R_{max} を同一 の値とみなせない場合は、R_{max}の Fit カラムの[▼]をクリックし Fit local を選択します。各セ ンサーグラムに至適な R_{max}を個別に算出します。

Parameter Setting ダイアログ下の OK をクリックすると、条件が適用されます。

モデルの設定が終了したら、Fitting を実行します。

画面左上の Fit をクリックします。

🖴 Fit	X
Apply To	
Selected	✓ <u>C</u> leared
	✓ <u>F</u> lagged
Action will not apply to	accepted or rejected series.
Help	OK Cancel

Fitting を行うセンサーグラムを指定して OK をクリックします。

Kinetics / Affinity		
Calculating results	13 done	3 remaining
Help		Cancel

Ţ

Fitting が開始します。解析を中断する際には、Cancel をクリックします。

全サンプルの解析が終了すると、解析結果が表示されます。

モデルを変更して再解析を実施する際には、Fit Setting ダイアログでモデルを指定後、Fitting を実行します。Fit Setting ダイアログの Replace or Add で、再解析結果に置き換えるか、追加するかを指定できます。

86 5. 相互作用測定

既存の 1:1 Binding モデルでは、解析結果の Quality Control 結果が表示されます。詳細内容 は、補足 5-11、5-12 を参照ください。

Thumbnails タブのセンサーグラムにも Quality Control の結果が表示されます。問題がある場合には、 Uマークが入ります。該当センサーグラムを選択して、画面右で詳細を確認します。

Report タブをクリックすると、各パラメータの算出値が表示されます。

<i>k</i> a (1/Ms)	結合速度定数
<i>k</i> _d (1/s)	解離速度定数
K _D (M)	解離定数
R _{max} (RU)	アナライトの結合最大量
RI (RU)	溶液効果(bulk effect)
Chi ² (RU ²)	カイ二乗
U-value	U-バリュー

補足 5-11. 解析結果の Quality Control

5項目の品質評価結果が、ステータスマークで表示されます。

<u>ステータスマーク</u>

	クオリティーアセスメントにパスしています。
0	クオリティーアセスメントの許容限界に近いです。
8	クオリティーアセスメントにパスしていません。
Ð	ニュートラルまたは各自で確認します。

品質評価基準

①速度定数がシステムのスペック範囲内かどうかチェックしています。

スペック範囲 $k_a = 3 \times 10^2 \sim 2 \times 10^8$ (1/Ms)、 $k_d = 1 \times 10^{-5} \sim 2$ (1/s)

②各パラメータが独立して算出されているかをチェックしています。

k_a、k_dおよび R_{max}について解析結果に与える、パラメータ間の相関性を確認しています。マストランスポートリミテーション下で測定した結果は、k_a、k_dに相関性が見られます。

③溶液効果の値(RI)の妥当性をチェックしています。

リファレンスセルおよびアナライトのゼロ濃度を差し引いている場合には、RI は 限りなくゼロとなりますが、結合・解離速度が速くセンサーグラムが箱型の場合に は、RI の値が大きく算出され、解析結果へ影響を与えます。

④センサーグラムはカーブを描いているかどうか、確認してください。 センサーグラムの結合・解離領域が直線的な場合、得られる解析結果の信頼性は低くなります。解離領域では結合量に対して 10~15%程度のレスポンス低下が必要です。 ⑤フィッティングカーブに対して測定プロットがランダムに分散しているかどうか、確認 してください。

Residuals タブをクリックして、残差プロットを確認します。Y 軸のゼロ近傍で、 ランダムにプロットが分散している場合は良好なフィッティングと判断できます。

補足 5-12. フィッティング結果の評価

フィッティングが良好な場合、センサーグラムとフィッティングによって得られたフィッ ティングカーブがほぼ重なります。センサーグラムの傾きが大きく異なる場合、フィッティ ングは良好ではないと判断します。また、解析結果の RI 値が 0 (RU) に近いか確認します。 統計学的には、以下の各項目を確認します。

Residual

Residuals タブをクリックして、残差プロットを確認します。Y 軸のゼロ近傍(通常±1~2RU)で、ランダムにプロットが分散している場合は良好なフィッティングと判断できます。緑色の2本のガイドライン内に収まっていれば問題ありません。

Chi²

測定データとフィッティングカーブ間の差を示します。良好なフィッティングで は、シグナルノイズの平均平方値に一致します。

U-value

解析値が信頼できるか否かを判断する値です。15以下であれば問題ありません。 25以上になると、算出された値の信頼性は低くなります。

SE (Standard error) \ddagger t t T-value

各パラメータについて SE (標準誤差) が表示されます。各パラメータ (ka、kd、Rmax など)の解析結果に対して SE 値が 10%以下であれば問題ありません。尚、マスト ランスポートリミテーションに関わるパラメータ (tc) に関しては、タンパク質の 場合、tc=1x10⁸ RU/Ms 程度ですが、マストランスポートリミテーションが起こって いないデータを解析すると、tc=1x10¹² かそれ以上の数値が算出されることがあり ます。このとき、SE も大きな数値して算出されることがありますが問題ありませ ん。

T-value は、解析結果を SE で割った値です。10 以上であれば問題ありません。 SE と T-value のいずれを表示するかは、Tools > Preferences で選択できます。

フィッティングが良好ではない要因

① フィッティングに採用したモデルが異なっている

- (または、想定していたモデルと異なる反応が起きている)
- ② 箱型のセンサーグラムである
- ③ 経時的なリガンドの活性低下が考えられる

④ 再生が不十分である

⑤ アナライト濃度の調製ミスが考えられる 等

①が要因と考えられる場合は、妥当な反応モデルを選択して再解析してください。
 ②が要因の場合、解析結果の RI がセンサーグラムのレスポンスの大半を占める値になることがあります。これは、結合解離領域の急激なレスポンスの変動を RI とみなしてしまうからです。この場合は、RI=0 (Constant)として再解析してください。

複数濃度のセンサーグラムから 1 つの定数を算出する解析方法では、すべての濃度のセン サーグラムにおいて k_a, k_d, R_{max}が同一のパラメータであることが前提となります。しかし、 上記③~⑤の実験状況では、各濃度のセンサーグラムにおいて、これらのパラメータは必ず しも一致しません。

例えば、Rmaxは、リガンドに対するアナライトの最大結合量(RU)であり、理想的な実験系では、連続して同一セルを使用している限り、どの濃度のセンサーグラムに対しても同一値となります。ところが、リガンドの再生が不十分な場合や、再生操作によりリガンドの活性がサイクルごとに低下している場合には、Rmaxはサイクルごとに低下します。フィッティングが良好でない要因が、測定結果から明らかに Rmax にある場合は、Rmaxが同一パラメータであることを解除し再解析してください。

90 5. 相互作用測定

解析結果のステータス

Thumbnails タブで各センサーグラムの解析結果のステータス設定を行います。 ここでは、次の 4 つのステータスを設定できます。

📕 Rejected 解析結果を採用しない

С

Cleared デフォルト設定

Flagged Flag を立てる

Accepted 結果を採用する

ステータスを設定する場合には、画面左のセンサーグラムの C をクリックして、ステータ スを変更します。または、センサーグラム上で右クリックして、ステータスを選択しま す。

Thumbnails タブのセンサーグラムを選択後、画面右に表示されるセンサーグラム上の Status でも変更できます。

画面左上の Tools→Hide Rejected で、Reject したセンサーグラムを非表示にできます。 Clear Flags で、Flag を解除できます。

注釈・コメントを設定したい場合には、補足 5-8 を参照ください。

Results Summary タブを選択すると、On-Off Rate Map を確認できます。

Table で解析結果、ステータス、注釈・コメントを確認できます。

削除したい結果がある際には、On-Off rate Map 上のプロットを右クリックして、Set Point To Rejected をクリックしてください。削除したデータは、テーブル情報が赤字に変わり ます。削除を取り消す際には、テーブル上で右クリックして、Cleare Status For Selection をクリックしてください。

テーブルの表示項目は、Table Columns の Result Summary で選択できます。

設定した項目内容を保存して以降の解析時にテンプレートとして使用する際には、ウイン ドウ下の Save Columns As Template にチェックを入れます。

On-Off rate Map を保存したい場合には、Map 上でマウス右クリック、Copy Graph で Paint または Word Pad に貼り付けて保存します。または、Export Curves で、テキスト形式で保存できます。

解析が終了したら、ウインドウ右下の Finish をクリックします。

 \downarrow

上記解析結果は、画面左端の Evaluation Explorer 中のフォルダに追加されます。ファイル 名にはサンプル名が自動的に入力されます。 再解析を行いたい場合には、ファイルを選択し て、右クリックの Edit を選択してください。

引き続き解析する場合は、ナビゲーションパネルの Evaluation の該当項目をクリックします。

Menu bar の File→Save as で結果を保存します。

解析後のセンサーグラムと Table 情報を Export したい場合には、Thumbnails タブ内で、マ ウス右クリック、Export All Graphs And Table を選択して、保存先を指定します。フォル ダが作成され、Thumbnails タブで表示されている全てのセンサーグラム(拡張子:png) と Table 情報(拡張子:txt)が Export されます。Export した各センサーグラムのファイル 名は、Results Summary タブのテーブルの Image File で確認できます。

Report Point Table の表示項目を変更したい場合には、Report Point Table ウインドウ右上の Table Columns を開いて設定してください。

解析メソッドの保存・実行

同じ内容で繰り返し測定・解析を行う場合には、設定した解析方法をメソッドとして保存 して、次回の解析で使用することができます。

メソッドを保存する場合には、Menu bar の File→Save Evaluation Method As を選択して保存 先と保存内容を指定します。

メソッド使用時には、解析データを File→Open で呼び出し後、File→Apply Evaluation Method を選択してメソッドを呼び出します。

補足 5-13. Kinetics Summary による各解析結果ファイルの一括表示

Kinetics Summary を使用すると、各解析ファイルに保存している Kinetics、Affinity 解析結果 をテーブ、On-Off rate Map または Steady State KD Plot に統合して表示できます。

Tools→Kinetics Summary をクリックします。Biacore S200 Kinetics Summary ウインドウが 開いたら、**File→Open** で、呼び込みたい解析結果ファイルを指定します。複数のファイル を呼び込む際には、**File→Append File** から呼び込みます。

Table タグで結果の一覧を、Thumbnails でセンサーグラムまたは Affinity 解析のプロットを 表示できます。On-Off rate Map および Steady State KD Plot の一覧を表示できます。

Biacore[®]S200 日本語取扱説明書 名前を付けて保存後に、Thumbnails 画面で、マウス右クリックして、**Export All Graphs And Table** を選択して、保存先を指定します。フォルダが作成され、**Thumbnails** タブで表 示されている全てのセンサーグラム(拡張子:png)と Table 情報(拡張子:txt)が Export されます。

<u>5-4. Affinity 解析</u>

ナビゲーションパネルの Evaluation \rightarrow Affinity をクリックします。

Name:	Affinity						
Curve Type:	ReferenceSubtracted	V Tempera	ture: 25	(°C)			
Durves:	▼ Fc=2-1	Mult	ple Rmax				
	V Fc=4-3						
Samples							
Samples Include	Sample	Ligand	Curve			<u>~</u>	Include Selected
Gamples Include	Sample	Ligand parp14	Curve Fc=4-3				Include Selected
Samples Include V	Sample A_1 A_1	Ligand parp14 parp15	Curve Fc=4-3 Fc=2-1				Include Selected
Samples Include V	Sample A_1 A_1 A_2	Ligand parp14 parp15 parp14	Curve Fc=4-3 Fc=2-1 Fc=4-3		-		Include Selected
Samples Include V V	Sample A_1 A_1 A_2 A_2 A_2	Ligand parp14 parp15 parp14 parp15 parp14 parp15	Curve Fc=4-3 Fc=2-1 Fc=4-3 Fc=2-1				Include Selected
Samples Include V V V	Sample A_1 A_1 A_2 A_2 B_1	Ligand parp14 parp15 parp15 parp14	Curve Fc=4-3 Fc=2-1 Fc=4-3 Fc=2-1 Fc=2-1 Fc=2-1				Include Selected
Samples Include V V V V V	Sample A_1 A_1 A_2 B_1 B_1	Ligand parp14 parp15 parp14 parp15 parp15 parp14 parp14 parp15	Curve Fc=4-3 Fc=2-1 Fc=4-3 Fc=2-1 Fc=2-1 Fc=4-3 Fc=4-3 Fc=4-3				Include Selected Exclude Selected Include All Egclude All
Samples Include V V V V V V	Sample A_1 A_2 A_2 B_1 B_2	Ligand parp14 parp15 parp14 parp15 parp14 parp15 parp14 parp15 parp14 parp15 parp14	Curve Fc=4-3 Fc=2-1 Fc=4-3 Fc=2-1 Fc=2-1 Fc=2-1 Fc=4-3 Fc=4-3 Fc=4-3 Fc=2-1 Fc=4-3				Include Selected Exclude Selected Include All Exclude All
Samples Include V V V V V V V V	Sample A_1 A_2 A_2 B_1 B_1 B_2	Ligand parp14 parp15 parp14 parp14 parp15 parp15 parp14 parp15 parp15 parp15 parp15 parp15	Curve Fc=4-3 Fc=2-1 Fc=4-3 Fc=2-1 Fc=2-1 Fc=4-3 Fc=2-1 Fc=2-1 Fc=2-1 Fc=2-1				Include Selected Exclude Selected Include All Exclude All
Samples Include V V V V V V V V V V V V V V	Sample A_1 A_1 A_2 B_1 B_1 B_2 C_1	Ligand parp14 parp15 parp14 parp15 parp14 parp15 parp14 parp15 parp14 parp15 parp14 parp14	Curve Fc=4-3 Fc=2-1 Fc=4-3 Fc=2-1 Fc=4-3 Fc=2-1 Fc=4-3 Fc=2-1 Fc=4-3 Fc=4-3				Include Selected Exclude Selected Include All Exclude All
Samples Include V V V V V V V V V V V V V V V V V V V	Sample A_1 A_1 A_2 B_1 B_2 B_2 C_1	Ligand parp14 parp15 parp14 parp15 parp14 parp15 parp14 parp15 parp14 parp15 parp15 parp15 parp15 parp15	Curve Fc=4-3 Fc=2-1 Fc=4-3 Fc=2-1 Fc=4-3 Fc=2-1 Fc=4-3 Fc=2-1 Fc=4-3 Fc=2-1 Fc=4-3 Fc=2-1				Include Selected Exclude Selected Include All Exclude All
Samples Include V V V V V V V V V V V V V V V V V V V	Sample A_1 A_2 B_1 B_2 C_1 C_1 D_1	Ligand parp14 parp15 parp14	Curve Fc=4-3 Fc=2-1 Fc=4-3 Fc=2-1 Fc=4-3 Fc=2-1 Fc=4-3 Fc=2-1 Fc=4-3 Fc=2-1 Fc=4-3 Fc=4-3				Include Selected Exclude Selected Include All Exclude All
Samples Include V V V V V V V V V V V V V V V V V V V	Sample A_1 A_2 B_1 B_2 B_2 C_1 C_1 D_1	Ligand parp14 parp15 parp14 parp15 parp14 parp15 parp14 parp15 parp15 parp14 parp15 parp14 parp15 parp14 parp15 parp14 parp15 parp15 parp14 parp15 parp14	Curve Fc=4-3 Fc=2-1 Fc=4-3 Fc=2-1 Fc=4-3 Fc=2-1 Fc=4-3 Fc=2-1 Fc=4-3 Fc=4-3 Fc=4-3 Fc=4-3 Fc=4-3 Fc=4-3				Include Selected Exclude Selected Include All Exclude All
Samples Include V V V V V V V V V V V V V	Sample A_1 A_1 A_2 B_1 B_1 B_2 C_1 C_1 D_1 D_1	Ligand parp14 parp15 parp14 parp15 parp14 parp15 parp15 parp15 parp15 parp15 parp14 parp15 parp14 parp15 parp15 parp14 parp15 parp15 parp14 parp15 parp15	Curve Fc=4-3 Fc=2-1 Fc=4-3 Fc=4-1				Include Selected Exclude Selected Include All Exclude All
Samples Include V V V V V V V V V V V V V	Sample A_1 A_2 A_2 B_1 B_2 B_2 C_1 D_1 E_1 E_1	Ligand parp14 parp15 parp14 parp15 parp15 parp14 parp15 parp14 parp15 parp15 parp14 parp15 parp14 parp15 parp14 parp15 parp14 parp15 parp14 parp15 parp14	Curve Fc=4-3 Fc=2-1 Fc=2-1 Fc=2-1 Fc=4-3 Fc=2-1 Fc=4-3 Fc=4-3				Include Selected

Name

解析結果の名前。必要に応じて変更します。

Curve Type ReferenceSubtracted (リファレンス差引データ)を選択します。

Temperature 温度を変えて測定している場合には、解析する温度を選択します。

Curve 解析に使用するカーブを選択します。

Multiple Rmax 同一のリガンドを異なる固定化量で固定化してセンサーグラムを取得した場合に、固定化量が異なるデータセットを同時に解析して共通の解析結果を算出します。

画面下の Table の Include で、解析に進めるサンプルにチェックを入れます。

94 5. 相互作用測定

画面左に、ゼロ濃度を差し引いたセンサーグラムの一覧が表示されます。表示は、View の、Small Thumbnails、Standard Thumbnails、Extended Thumbnails で変更できます。並 びは、Arrange By で変更できます。選択したセンサーグラムの詳細情報は画面右で確認で きます。

ブランクサブトラクション、サンプルサイクルの選択

センサーグラム下の **Display Blanks** を選択すると、そのサンプル名のゼロ濃度センサーグ ラム(ブランク)が表示されます。画面下の Included Curves の[♥]を選択するとゼロ濃度サ イクルとサンプルサイクルの一覧を確認できます。ここで、ゼロ濃度および解析に持ち込 むサンプルの選択が可能です。Include のチェックを外すと、解析から除くことができま す。ゼロ濃度サイクルが複数ある場合には、選択したゼロ濃度センサーグラムの平均が差 し引かれます。なお、サンプル名に対してゼロ濃度の測定を行っていない場合には、Table 下の Blanks from other sample series から選択することができます。

センサーグラムのステータス設定

各センサーグラムのステータスを設定できます。 ここでは、次の3つのステータスを設定できます。

■ Rejected 解析に持ち込まないセンサーグラム(結合なし、乱れが大きいなど)

Cleared デフォルト設定、解析に持ち込むセンサーグラム

Flagged 解析に持ち込むが、Flag を立てるセンサーグラム

ステータスを設定する場合には、画面左の各センサーグラムの C をクリックして、ステー タスを変更します。または、センサーグラム上で右クリックし、ステータスを選択しま す。

画面左上の Tools→Hide Rejected で、Reject したセンサーグラムを非表示にできます。 Clear Flags で、Flag を解除できます。

注釈・コメントを設定したい場合には、補足 5-8 を参照ください。

Affinity 解析で用いる、レポートポイントの設定を行います。 画面左上の Settings の Report Point Settings をクリックします。

🗷 Report Point S	ettings				×
Calculate resp	onse at <u>p</u> osition	4	s <u>e</u> conds	before injection stop	~
with <u>w</u> indow 5	seconds				
Apply To					
	Selected	🗹 🖸	leared		
		🗹 <u>E</u> l	agged		
	Action will not apply to a	accepted (or rejected s	eries.	
Help				DK Cance	:

デフォルトでは、添加終了4秒前に設定されています。必要に応じて変更します。 Apply To で適用するセンサーグラムを選択します。

Selected	Thumbnails タブで選択したセンサーグラム
Cleared	ステータスが Cleared の全センサーグラム
Flagged	ステータスが Flagged の全センサーグラム
OK をクリックし	ます。

 \downarrow

解析モデルの設定を行います。画面左上の Settings→Fit Settings をクリックします。

🗷 Fit Set	tings 🛛 🔀
<u>M</u> odel:	Steady State Affinity Earameters Steady State Affinity Steady State Affinity Constant Rmax Steady State Affinity Constant Rmax
	Steady State Aminity Constant Rmax (Multi Site)
Replace	e or Add O Replace current fitting
	 Add new fitting
Apply	Γο
	Selected ✓ Cleared
	✓ <u>F</u> lagged
	Action will not apply to accepted or rejected series.
<u>H</u> elp	OK Cancel

Model 解析モデルを選択します。(モデルについては補足 5-14 を参照)

Parameters 選択したモデルの初期値、Fitting 方法などの変更ができます。

Replace or Add で、これから実施する解析結果を上書きするか、追加するかを選択できます。

Apply To で、選択したモデルを適用するセンサーグラムを選択します。

補足 5-14. Affinity 解析モデル

次の3つのモデルから選択できます。

Steady State Affinity

1:1 Binding モデルの Affinity 解析モデル。

$$R_{eq} = \frac{CR_{max}}{K_{D} + C} + offset$$

Req: 平衡値(RU)、Rmax: 最大結合量(RU)、C: アナライト濃度(M)、KD: 解離定数(M)、 offset: アナライトゼロ濃度のレスポンス(Req vs C プロットの Y 切片に相当)

Steady State Affinity Constant Rmax

1:1 Binding モデルで、R_{max}を設定値を使用して解析するモデル。 低アフィニティーでアナライト濃度を高濃度に設定できない場合に使用します。

🗏 Fit Set	tings	×
<u>M</u> odel:	Steady State Affinity Const	ant Rmax 🛛 🖌 Parameters
Control	<u>R</u> max: 15	(RU/100 Da)
Adjust Rma	x for controls is turned off	Adjust Rmax For Controls
(Adjustmen	s will apply to all series that use	Control Rmax.)
Replac	e or Add]
	Replace curr	ent fitting
	◯ Add <u>n</u> ew fittir	ng
Apply	-o	
	Selected	✓ <u>C</u> leared
		✓ Elagged
	Action will not apply to a	accepted or rejected series.
<u>H</u> elp		OK Cancel

設定する R_{max}値は、ポジティブコントロールを R_{max}に到達する高濃度で添加して得られる 結合量か、ポジティブコントロールの解析結果で得られた値を R_{max}として使用します。 Control Rmax の欄に入力する値の単位は、RU/ 100 Da です。

例えば、ポジティブコントロールの結合量が 30 RU で分子量が 300 Da の場合には、<u>Control</u> Rmax の値は、結合量 ×100 / ポジティブコントロール分子量 = 30 RU × 100 / 300 Da = 10

(RU / 100 Da)となります。 解析時には、アナライトの分子量差を次の式で補正した値を、各アナライトの R_{max}値とし

て適用します。

Rmax_{analyte} = ControlRmax ×
$$\frac{MW_{analyte}}{100}$$

さらに、リガンドの活性低下を考慮した補正を行う場合は、Adjust Rmax For Controls を クリックして、補正に使用するポジティブコントロールを設定します。この際、設定する ポジティブコントロールの Rmax値(Control Rmax に入力する値)は、サイクルはじめのポ ジティブコントロールの結合量(RU / 100 Da)を入力してください。

R_{max}の補正には、全サイクルのポジティブコントロールの結合量を Linear または Polynomial で Fitting して得られる補正曲線を使用します。各サンプルの濃度シリーズのは じめのサイクルに対応する補正曲線の Y 軸の値を Control Rmax 値として使用します。濃 度シリーズ内ではその値を固定値とします。

Steady State Affinity Constant Rmax (Multi Site)
リガンド上に結合サイトが2つあることを想定したモデル。
高濃度で低親和性の結合が確認できる場合などに使用します。
$R_{eq} = \frac{CR_{max1}}{K_{D1} + C} + \frac{CR_{max2}}{K_{D2} + C} + offset$
🗉 Fit Settings 🛛 🔀
Model: • Steady State Affinity Constant Rmax (Multi Site) Parameters
Control <u>R</u> max: 50 (RU/100 Da)
Adjust Rmax for controls is turned off Adjust Rmax For Controls
(Adjustments will apply to all series that use Control Rmax.)
Replace or Add
Replace current fitting
Apply To
Action will not apply to accepted or rejected series.
Steady State Affinity Constant Rmax と同様に、Control Rmax の値(R _{max1} 値の算出に使用し
ます。)を設定します。R _{max2} は変数として解析を行います。
必要に応じて、Adjust Rmax For Controls を使用します。

モデルの設定が終了したら、Fitting を実行します。 画面左上の **Fit** をクリックします。

🗷 Fit	
Apply To	
Selected	✓ <u>C</u> leared
	✓ <u>F</u> lagged
Action will not apply to ac	ccepted or rejected series.
	OK Cancel

 \downarrow

Fitting を行うセンサーグラムを指定して OK をクリックします。

Kinetics / Affinity		
Calculating results	18 done	4 remaining
		Cancel

Fitting が開始します。解析を中断する場合は、Cancel をクリックします。

 \downarrow

全サンプルの解析が終了すると、解析結果が表示されます。

モデルを変更して再解析を実施する際には、Fit Setting ダイアログでモデルを指定後、Fitting を実行します。Fit Setting ダイアログの Replace or Add で、再解析結果に置き換えるか、追加するかを指定できます。

Thumbnails タブで選択したプロットの結果を、画面右で確認できます。 Report タブに結果が表示されています。

K _D (M)	解離定数
R_{max} (RU)	アナライトの最大結合量
Offset (RU)	X=ゼロの Y の値
Chi ² (RU ²)	カイ二乗

Rmax が理論的 Rmax に近いかと、Offset 値が小さいかを確認してください。

補足 5-15. Affinity 解析結果の Quality Assessment

平衡値解析において、信頼性の高い解析結果を得るためには、解析結果の K_D 値がアナラ イ

トの最も高濃度の 1/2 以下の濃度である必要があります。つまり、アナライトの濃度範囲 が低濃度領域で、R_{max} からかけ離れた平衡値範囲で測定している場合には解析結果の信頼 性は低くなります。(このような場合には、R_{max}値が理論値よりも大きな値が算出されま す。)

解析結果のグラフ上の、X 軸=算出された K_D 値(M)のラインが黒色表示の場合は、ア ナライトの最も高濃度の 1/2 以下の濃度で算出されていることを表します。

解析結果のステータス

Thumbnails タブで各センサーグラムの解析結果のステータスを設定できます。 ここでは、次の4つのステータスを設定できます。

Rejected 解析結果を採用しない

Cleared デフォルト設定

Flagged Flagを立てる

Accepted 結果を採用する

ステータスを設定する場合には、画面左のプロットのLEをクリックして、ステータスを変 更します。または、プロット上で右クリックして、ステータスを選択します。 Thumbnails タブのプロットを選択後、画面右に表示されるセンサーグラム上の Status で

も変更できます。

画面左上の Tools→Hide Rejected で、Reject したセンサーグラムを非表示にできます。 Clear Flags で、Flag を解除できます。 注釈・コメントを設定したい場合には、補足 5-8 を参照ください。

Results Summary タブを選択すると、KD Plot を確認できます。 Table で解析結果、ステータス、注釈・コメントを確認できます。

KD Plot を保存する場合は、Plot 上でマウス右クリック、**Copy Graph** で Paint または Word Pad に貼り付けて保存します。または、**Export Curves** で、テキスト形式で保存できます。 ウインドウ右下の **Finish** をクリックして、解析結果を最終化します。

 \downarrow

画面左下の Evaluation Explorer の Affinity フォルダー内に結果が追加されます。引き続き 解析を行う場合には、ナビゲーションパネルの Evaluation の該当項目をクリックします。 Menu bar の File→Save as で結果を保存します。

解析後のセンサーグラムと Table 情報を Export したい場合には、Thumbnails タブ内で、マ ウス右クリック、Export All Graphs And Table を選択して、保存先を指定します。フォル ダが作成され、Thumbnails タブで表示されている全てのセンサーグラム(拡張子:png) と Table 情報(拡張子:txt)が Export されます。Export した各センサーグラムのファイル 名は、Results Summary タブのテーブルの Image File で確認できます。

解析メソッドの保存・実行

同じ内容で繰り返し測定・解析を行う場合には、設定した解析方法をメソッドとして保存して、次回の解析で使用することができます。

メソッドを保存する場合には、Menu bar の File→Save Evaluation Method As を選択して保 存先と保存内容を指定します。

メソッド使用時には、解析データを File→Open で呼び出し後、File→Apply Evaluation Method を選択してメソッドを呼び出します。

スケールの変更:

Scale...

通常 Auto が選択されています。スケールを変更する場合は、 VAutoのチェックを外し、各

軸のスケールの最小値(Min:)と最大値(Max:)を入力します。

Scale	
X Scale	Y Scale Auto Logarithmic
Min: -50	Min: -50
Мах: 300	Max: 400
	K Cancel

凡例の移動と削除:

Legend...

通常 Right が選択されています。移動する位置を選択します。凡例をグラフに表示しない場合は、Hidden を選択します。

グリッドラインの表示:

Gridlines...

Gridlines	
X Axis Major Gridlines	OK Cancel
Y Axis Major Gridlines Minor Gridlines	

主軸目盛りに対してグリッドラインを表示させるときは、Major Gridlines にチェックを入れ ます。副目盛りに対してグリッドラインを表示させるときは、Minor Gridlines にチェックを 入れます。

補足 5-17. データの移管

の方法があります。

- ① 画像データファイルとして移管
- ② テキスト形式ファイルとして移管
- ③ エクセル形式ファイルとして移管

画像データファイルとして移管

Sensorgram window 上のマウスの右クリックメニューを使用します。

Copy Graph をクリックします。

グラフを画像としてコピーします。続いて Biacore 付属のパソコンにインストールされてい る Word Pad、Paint などに貼り付け、貼り付けたファイルを保存します。保存したファイル は、画像として別のパソコンに移動させることが可能です。

(例) Word Pad への貼り付け

センサーグラムをテキスト形式ファイルとして移管

Sensorgram window 上のマウスの右クリックメニューを使用します。

Export Curves...をクリックします。

 \downarrow

保存先を指定して保存します(拡張子:txt)。保存したファイルは、他のパソコンの Excel 等のグラフ描画機能を持つソフトウェアで再びセンサーグラムを作成することが可能です。

(例)保存した text ファイル

Beta2micro-high2_X	Beta2mi	cro-high	2_Y	RPoint_X	RPoint_	ŕ	Beta2mi	cro-hi -
-19 0.558594	-3	0.07128	91	-19 0.83398	4	-3	0.05761	72
-18 0.533203	0	0	-18	0.761719	0	0	-18	0.745
-17 0.5625 2	-0.0820	313	-17	0.779297	2	-0.10253	39	-17
-16 0.457031	182	332.89	-16	0.740234	182	332.645	-16	0.608
-15 0.417969	185	333.021	-15	0.712891	185	332.791	-15	0.538
-14 0.411133	187	332,999	-14	0.701172	187	332.898	-14	0.501
-13 0.400391	197	327.708	-13	0.618164	197	327.761	-13	0.421
-12 0.310547	200	325.22	-12	0.567383	200	325.211	-12	0.355
-11 0.216797	202	323.455	-11	0.496094	202	323.496	-11	0.458
-10 0.198242			-10	0.349609			-10	0.431
-9 0.182617			-9	0.414063			-9	0.332
-8 0.25293		-8	0.39160	2		-8	0.43652	3
-7 0.181641			-7	0.267578			-7	0.291
-6 0.143555			-6	0.24707		-6	0.20410	2
-5 0.0888672			-5	0.15332		-5	0.12695	3
-4 0.178711			-4	0.170898			-4	0.122
-3 0.0712891			-3	0.0576172			-3	0.095
-2 0.0488281			-2	0.0605469			-2	-0.03
-1 0.0195313			-1	0		-1	-0.0488	281
0 0		0	0		0	0		
1 -0.0283203			1	-0.0517578			1	-0.11
2 -0.0820313			2	-0.102539			2	-0.15
3 -0.169922			3	-0.194336			3	-0.13
4 -0.130859			4	-0.303711			4	-0.15

解析データを Excel 形式ファイルとして移管

保存先を指定して保存します(拡張子:xls)。Evaluation Explorer に表示されている解析結果の数値データなどが保存されます。ただし、センサーグラムのデータは保存されません。 他のパソコンの Excel で解析結果を開くことができます。

(例)保存した xls ファイル

補足 5-18. ファイルのアイコン

ファイルの種類によって付属のアイコンが異なります。

- ・Biacore S200 Control ソフトウェアで保存したファイル(拡張子.blr)
- ・Biacore S200 Evaluation ソフトウェアで保存したファイル(拡張子.bme)
- ・テキスト形式で保存したデータファイル(拡張子.txt)

6. メソッド詳細

各種実験目的に添ったテンプレートメソッドを準備しています。至適なテンプレートを使用 して測定を実行できます。テンプレートの編集が必要な際には、以降の詳細に従って自由に 変更を行うことができます。

メソッドの構成

メソッドビルダーの重要な設定項目は"Assay Steps"と"Cycle types"です。

始めに、AssaySteps で測定全体のアウトラインを設定します。一つもしくは複数の測定ステ ップを設定します。それぞれの測定ステップは Startup、Samples、Control Samples 等の測定目 的別で設定します。

Cycle types では、測定ステップ別に詳細なテンプレート(温度、流速、試料の添加順序等) を設定します。

6-1. テンプレートメソッドの呼び出し

実験目的別に既存のテンプレートがあります。既存のテンプレートがない場合には、実験目 的に近いテンプレートを使用して変更を行います。

テンプレートは、Biacore Templates の各フォルダー内にあります。

目的のテンプレートを選択して画面左下の Open をクリックします。

Ţ

Overview 画面が表示されます。

🏧 Method Builder - M	lain 🛛					
Overvie <u>w</u>	Assay steps	:				General settings
General Settings	Startup [Startup]		Startup/Contr sample	3 times as entered.		Concentration unit = nM Data collection rate = 10Hz Sample compartment temperature = 25 °C Detection = Dual
Cycle Types	Sample [Sample]		Sample	1 time as entered.		Settings for assay step "Startup"
<u>V</u> erification	t	Solvent correction [Solvent correction]	Solvent correction	1 time as entered.	Before / every 50 (Temperature = 25 °C Buffer = A
Setup <u>R</u> un	t	Control sample [Control sample]	Startup/Contr sample	1 time as entered.	Before / after / eve	Settings for cycle type "Startup/Contr sample" Sample 1: varies by cycle, 60s, 300s Carry-over control 1:
						Report points
	<				>	Expand All Collapse All
	<u>S</u> ave	Save <u>A</u> s				Liose

<u>6-2. メソッドの編集</u>

5200	Method Builder -
(Overvie <u>w</u>
(<u>G</u> eneral Settings
	Assay Steps
	Cycle <u>T</u> ypes
ſ	Verification
	Cycle Types

画面左列に各ステップボタンがあります。**General Settings** から **Verification** までの上から4 つのボタンでメソッドを作成します。

Overview	測定内容の表示
General Settings	システム初期条件の設定
Assay Steps	測定全体のアウトラインの作成
Cycle Types	測定ステップごとの詳細なテンプレートの設定
Verification	作成メソッドの確認
	\downarrow

Overview をクリックします。

112 6. メソッド詳細

🏧 Method Builder - Ma	ain					
Overvie <u>w</u>	Assay steps					Beneral settings
General Settings	Startup [Startup]		Startup/Contr sample	3 times as entered.		Concentration unit = nM Data collection rate = 10Hz Sample compartment temperature = 25 °C Detection = Dual
Cycle <u>Types</u>	Sample [Sample]		Sample	 1 time as entered. 		Settings for assay step "Startup"
Verification	t	Solvent correction [Solvent correction]	Solvent correction	1 time as entered.	Before / every 50 (Buffer = A
Setup <u>R</u> un	t	Control sample [Control sample]	Startup/Contr sample	1 time as entered.	Before / after eve	Settings for cycle type "Startup/Contr sample"
						Latry-over control 1: Beport points
	<				>	Expand All Collapse All
	<u>S</u> ave	Save <u>A</u> s				Close

各項目をクリックすると、右側の画面で測定ステップの詳細を確認することができます。

 \downarrow

General settings をクリックします。

🏧 Method Builder - M	in la	- 2 🛛
Method Builder - M	Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: State collection rate Image: S	
Help	Save As	Dose

Biacore[®]S200 日本語取扱説明書

1 Data Collection rate

1 Hz、10 Hz もしくは 40 Hz を選択します。	
反応速度定数、熱力学パラメータ算出の場合	10、40 Hz
それ以外の実験目的の場合	1 Hz

2 Detection

流したいフローセルに対応した検出モードを以下から選択します。

Single	1、2、3、4
Dual	1,2、3,4、2-1、4-3
Multi	1,2,3,4、2-1,4-3、2-1,3-1,4-1

3 Sample compartment temperature

サンプルコンパートメントの温度(4~45℃)を設定します。サンプルコンパートメ ントの温度は、サンプルの安定性を考慮し、10℃程度に設定することもありますが、 DMSO を含むサンプルの場合は、低温で析出することがあるので注意が必要です。

Vary with analysis temperature

Analysis temperature と同じ温度に設定したい場合にチ ェックを入れます。

④ Concentration unit

アッセイ全体を通して用いる濃度単位を選択します。

5 Buffer settings

使用するランニング緩衝液名を入力しておくと、記録として残すことができます。

6 After run

この項目にチェックを入れておくと、全測定が終了した後に、センサー表面の温度 が指定した温度に自動変更されます。

Assay steps をクリックします。

🔤 Method Builder - J	Main							EP
Overview General Settings Assay Steps Cycle Types	New Delete Copy Move Up	1	Startup [Startup] Sample [Sample]	Solvent corr	Startup/Contr sample Sample	3 times as entered. ↓ 1 time as entered.]
<u>V</u> erification	Move Down		t t	[Solvent correct Control samp [Control sampl	ection] Solvent correction ple le] Startup/Contr sample	1 time as entered.	Before / every 50 cycles. Before / after / every 30 cycles.]]
	Cycle Run List							
2	Base settings Name: St Purpose: St Connect to cycle type: St	artup artup artup/Contr s	ample	3	Recurrence Repeat assay step within: Every Distribute Run assay step once	1 Cycle 1 Cycle first Run	ces evenly assay step once last	
4	Assay step pre Temperature: 25 Buffer: A	paration	S	5	Number of replicates image: times As entered (1,2,3,1,2, Order (1,1,2,2,3,3) Random	3]		
Help (<u>S</u> ave Save	e <u>A</u> s						

Assay steps では 5 つの設定項目があります。アッセイを正しく構築するためには、①、②および③の理解が必須です。

編集したい測定ステップをクリックし、各項目を設定します。

1 Assay Steps

測定ステップの作成と各測定ステップの配置を変更します	- 0	
測定ステップを追加する場合は New (👎 New)	から作成できます。新
規で作成する測定ステップは、後述する Purpose と Cycle	etyp	e の関連づけが必要で
す。詳細は、補足 6-3 を参照してください。 🎓 Move Up		
各測定ステップの配置は Move Up ()	および Move Down
(^{↓ Move Down}) にて調整します <u>測定マテッ</u> プを削	削除	したい場合には、該当
の測定サイクルを選択後、Delete())	を	クリックします。

2 Base settings

Name	測定ステップの名称を入力します。最初は Purpose の名
	称と同一ですが、変更することも可能です。

Purpose各測定ステップを"何のために"実行するか設定します。Evaluation Softwareにおいて各測定ステップを適切に認識するために必要かつ重要な項目です。以下の7種類が

あります。

Conditioning Solvent correction Sample Undefined Startup Calibration Control Sample

Connect to cycle type

Cycle types 画面で定義したサイクルタイプを関連づけま す。サイクルタイプはプルダウンメニューに一覧で表示 されます。サイクルタイプに関しては、後述する該当項目 を参照してください。ウィザードで作成したテンプレー トを使用する場合は、適切に関連づけられているので、新 規のアッセイステップを追加しない限り、特に設定を変 更する必要はありません。

③ Recurrence

Calibration、Control Sample、Solvent correction などをサンプル測定ステップ内で定期 的に繰り返し実行するための設定項目です。通常、ウィザードで作成したテンプレ ートを読み込んだ場合はすでに設定されています。必要があれば測定頻度の変更や、 サンプル測定ステップの最初と最後に測定する項目を追加できます。詳細は、補足 6-1 を参照してください。

④ Assay step preparations

温度の入力し、ランニング緩衝液を選択します。ランニング緩衝液を 1 種類しか使 用しない場合は設定する必要はありません。(デフォルトでは、A が選択されていま す)

5 Number of replicates

同一サンプル(コントロールサンプルや検量線用試薬も同じ)について繰り返し測 定回数を入力します。合わせて、測定順序を As Entered、Order および Random の 中から選択します。

Recurrence	
Repeat assay step within: Thermo 1	
● Every 15 🗢 cycle	
🔿 Distribute 🔰 👌 occurrences evenly	
🗌 Run assay step once first 👘 Run assay step once last	
	このも、学校レックノ
间隔の唯認に関しては、 Cycle Run List 機能を使います。使用力法は、相正	6-2 を参照してく
ださい。	
	ンホーナドイ
なお、測定人ナッノか複数存在する場合は、上から並んた順に実行されます。	。必要に応じて、
Move Up および Move Down を用いて並べ替えます。	
Startup 1 [Startup] Thermodynamics 5 times as entered.	
L Thomas 1	
[Sample] Thermodynamics 1 time as entered.	
Solvent correction 1	
[Conditioning] Solvent correction 1 time as entered. Every 15 cycles.	
Control sample 1	
上に示した例では、アナライトが 30 サンブルの場合、以下のように測定が	実行されます。
↓ Startup 1	
↓ Solvent correction 1	
$\downarrow Control Sample 1$	
↓ Thermo 1 1 から 15 番日までのアナフィ	F .
↓ Solvent correction 1	
↓ Control Sample 1	
↓ Inermo 1 Ib から 30 番日のアナフィト	

🏧 Method Builder - Main		
Method Builder - Main Overview Quele types Solvent correction Sample Assay Steps Cycle Types Verification Setup Fun Setup Fun Sample Capture Insert Remove Sample 1 Carty-over control 1	Performance Performance	scription of selected cycle type is cycle type is used in the Sample step and contains injections of sample and my-over control (unning buffet). The sample injection type is Single cycle kinetics. Method Variables Evaluation Variables Set property as variable Sample solution Contact time (s) Flow rate (µl/min)
Help Save Save As		Close

Cycle types では大きく分けて 4 つの設定項目があります。

① サイクルタイプの作成、削除、名前の変更

作成法の詳細は、補足 6-3 を参照してください。

② 各サイクルのコマンドの設定およびパラメータの入力

Injections Report Points	Injections Report Points	
Capture 🔽	Capture	
Sample 1 Carry-over control 1	Capture Sample Enhancement Regeneration Carry-over control Solvent correction General Condition	
各コマンドをプルダウンメ:	ニューから選択し、Insert (timsert) をクリッ:	クし
て追加します。各コマンドの	の順序は 🚺 および 🛃 にて調整します。各コマン	ンド
のパラメータは、右隣の画言	面②'で入力します。	
使用頻度が高いのは Captu	ure、Sample、Regeneration です。中でも <u>Sample (</u>	<u>t</u>
<u>Evaluation software</u> で、反応	法度定数や親和定数の算出および濃度測定などの解析	斤を
実行する際に必須なコマン	ドとなります。	

<u>Sample</u>

測定サンプル(アナライト)の添加コマンドです。

Types:

添加モード

High performance サンプル添加時の希釈が少なく、主に、反応速度定数や解 離定数の算出時に用います。

Low Sample consumption

サンプルの消費量が少なく、結合有無確認や濃度定量で 用います。添加時間は流速に依存しますが、2~350秒で 指定できます。

Single cycle kinetics

シングルサイクル法による反応速度定数や解離定数算出 時に用います。最大 9 濃度までアナライトの連続添加が 可能です。指定した解離時間は、一番最後の添加に適応さ れます。

Clean screen

スループットに適した添加方法と添加後の流路の洗浄を 指定試薬で実施します。サンプル添加後のレスポンス上 昇量が、Wash when more than:で指定した値以上の場合 には、Use adaptive wash with で指定した洗浄溶液(50% DMSO など)でセンサーチップ以外の流路を洗浄します。 サンプル添加時間は 1~100 秒で指定できます。

Binding level screen

スループットに適したハイクオリティーの添加コマンド です。サンプル添加後に自動実施されるバッファー洗浄 時間を短縮しています。通常は、**Extrwa wash**を併用しま す。添加時間は 1~100 秒で指定できます。

A-B-A

Running

ソリューションA(Flanking solution)を添加後にサンプル B(Sample solution)を添加して、引き続きソリューショ ンAを連続添加するコマンドです(下図参照)。競合阻害 試験やバッファースカウティングで使用できます。それ ぞれの溶液の添加時間を指定できます。

サンプル B の濃度を振ることで、Kinetics/Affinity 解析を 行うこともできます。解析を行う場合には、Evaluation Variables で、Kinetics/Affinity を選択します。

Flanking solution (A) Running buffer

Flanking solution (A) Sample (B)

Sample solution:	デフォルトは Is variable です。			
Contact time:	サンプル添加時間	罰(s)を入力します。		
Dissociation time:	解離時間(s)を入力します。シングルサイクル法では、 最後に添加するサンプルの解離時間の設定となります。			
Flow rate:	流速(µl/min)を	入力します。		
Flow path:	サンプル添加流路 Detection を Dua ルにサンプルが泳 First	各を選択します。 al に設定している場合、以下のフローセ 充れます。必要に応じて選択します。 2-1 の場合は 1 4-3 の場合は 3		
	Second	2-1 の場合は 2、4-3 の場合は 4		
	Both	2-1 の場合は 1 および 2		
		4-3 の場合は 3 および 4		
	Detection を Mu ーセル番号をプル	lti に設定している場合は、該当するフロ レダウンメニューから選択します。		
Predip	サンプルを分取 ⁻ ックを入れます。	する前にニードルを洗浄する場合にチェ		
Mix with:	装置が : 各サンプルは指す 加されます。	2 種類のサンプルを混合します。 定された溶液と混合後にフローセルに添		
	混合したい溶液の ルおよび混合用料	の名称を入力します。Fraction:にサンプ ^{密液の"混合比"を入力します。}		
	例えば、20(%)	と入力すると、混合用溶液 20% とサンプ		
	ル 80%が混合さ	れます。混合後は、Stabilization period		
	after mix に入力	された時間が経過した後に添加されます。		
	阻害法を用いた激	豊度測定実験で使用します。なお、Mix 機		
	能を使用する場合	合には必す混合用のバイアルが必要です。		
Extra wash after injection	with:			
	サンプル添加後の	Dフローセル以外の流路を洗浄する場合		
	にチェックを入れ	1ます。洗浄溶液名を入力します。センサ		
	ーチップ表面にし	は流れません。		
Stabilization period:	次のコマンド実行 ックを入れます。	うまでの待機時間を設定する場合にチェ 待機時間(s)を入力します。		

<u>Capture</u>

リガンドのキャプチャー用添加コマンドです。

Enhancement

アナライトの結合確認、またはシグナル増幅として 2 次抗体などを添加するコマン ドです。

Regeneration

再生溶液の添加コマンドです。粘性が高い溶液(40% グリセロール以上)を使用する場合は、High viscosity solution にチェックを入れます。

Carry-over control

キャリーオーバーチェックの添加コマンドです。 40 µl/min で 30 秒ランニング緩衝液を添加します。Evaluation Software で結合レスポ ンスからキャリーオーバーを評価します。低分子化合物をアナライトとして添加す る場合は、測定サイクルの最後に実施することを推奨します。

Solvent correction

溶媒補正溶液の添加コマンドです。

30 µl/min で 30 秒溶媒補正溶液を添加します。溶媒補正溶液を添加する数だけ、コマンドを挿入します。

General

Sample コマンドと同等の機能を持ちますが、添加モードに Dual Inject の機能が追加 されています。Dual Inject は、1 つ目のサンプル添加終了後、ランニング緩衝液での 自動洗浄をはさむことなく、引き続き2つ目のサンプルを添加することができます。 ただし、General コマンドで実行したデータは解析できません。

Condition

自動判断機能(If/Then 機能)コマンドです。 取得したレポートポイントの値から、その次の操作コマンドの追加、省略、プログラ ム全体を終了させる設定が可能です。

③ 各測定サイクルの変数の設定

変数設定には、Method Variables と Evaluation Variables の 2 つがあります。

Method Variables Evaluation Variables	Method Variables	Evaluation Variables
Set property as variable Sample solution	Evaluation <u>p</u> urpo	se:
Contact time (s) Dissociation time (s) Flow rate (μl/min)	Predefined variab	les:
	Name	Value type
	MW	Numeric
	User-defined varia	ables:
	Name	Value type
	Add	Delete

Method Variables

各測定サイクルのコマンドおよびパラメータの変数を設定できます。通常、サンプルの変数設定は、Sample solution にチェックが入っています。測定サイクルごとに添加時間などを変数として設定する場合は、各項目にチェックを入れます。

Evaluation Variables

解析ソフトウェアに反映される変数の設定および解析目的を設定します。 テンプレートのメソッドやウィザードで作成したテンプレートを開いている場合、 Evaluation purpose に応じて解析に必要な変数はあらかじめ設定されています。それ らのチェックは外さないように注意します。チェックが入っていなくても測定自体 は実行されますが、Evaluation software による解析は実行できません。 テンプレートに定義されていないパラメータを作成する場合は、User defined variables 下の Add...をクリックし作成します。Evaluation purpose は、Sample コマ ンドの設定時のみ表示されます。Evaluation purpose には以下の7種類があります。

Kinetics/Affinity Affinity in solution Thermodynamics

Kinetics - Heterogeneous

analyte

General

④ レポートポイントの編集

Report Points タブをクリックすると、各コマンドのレポートポイントの一覧を見ることがき ます。レポートポイントの追加方法は以下の通りです。

	ands Report F	oints									
	Name	Sec	Before//	After	Start of/Er	nd of	Inject		Window	Base	line
1	baseline	10	Before	-	Start of	-	Sample 1	-	5	Yes	-
2	binding	5	Before	-	End of	-	Sample 1	-	5	No	-
3	stability	10	After	-	End of	-	Sample 1	-	5	No	-
4	co_baseline	10	Before	-	Start of	-	Carry-over control 1	-	5	Yes	-
5	co_binding	5	Before	-	End of	-	Carry-over control 1	-	5	No	-
6	co_stability	10	After	-	End of	-	Carry-over control 1	-	5	No	-
7				-		-		-			-
	Name				レポートポ	イン	トの名称を入力し	ノま	す。		
	Before / / Start of / Inject	After End d	of	7 5 1 0 1	ッ離れた時 Start of / End どちら側に Inject で定 のどちらを 取得したい	刻に レポ る 準 ポ	レホートホイン るよび Inject で定調 ートポイントを取 れるイベントの閉 点にするかを設定 ートポイントと閉	トを 義る 労 足 連	取るかを れるイベ かを設定 時刻およ ます。 づけるイ	設定 ント(し び終 ベン	します の前後 [−] 。 下。 下 をフ
	Window				レダウンメ	ニュ	ーから選択します トの値(RU)を算	F。 算出	するため	の時[間幅を

- New	Cor	ntrol sample 4			
		ntrol sample]	Control sample	1 time as entered.	Every 15 cycles.
Сору	Startup 5		Thermodynamics	3 times as entered.	
	[Dearcap]			o anes as cherea.	
	Thermo 5				
Move Up	[Sample]		Thermodynamics	1 time as entered.	
4 Move Down					
		ntrol sample 5 ntrol sample]	Control sample	1 time as entered	Every 15 cycles
	Lee	na or sampio]		1 dino do oricorodi	
	Assay step 1				
	[]		Not connected	1 time as entered.	
Cycle Run List					
· · · · · · · · · · · · · · · · · · ·					
Assaulsten properties					
Base settings		Recu	rrence		
Name: Assaulsten 1			Reneat assaulsten v	within: Thermo 5	
Durana					
Purpose:		×	Every	15 😂 oj	ycle
Connect to Not Connect	ed 🔹	×	🔿 Distribute	1 🔅 o	courrences evenly
03010 (Jp0.			📃 Run assay step	once first	Run assay step once last
アッセイステップの最	後尾に新規の)ステップ	(ここでは A	ssay step 1) 🕇	が挿入されます。 Assay
sten1をクリックして	選択し Base	settinas	の設定に移り)ます.	
500010777000		Jorenigo			
	~ Base settings -		\downarrow		
	b doo oonnigo				
	Name:	Solvent o	orrection		
	Purpose:	Solvento	correction	*	
	Connect to	Solventic	orrection		
	cycle type:	JOIVENIC	onection		
Name		Solvent co	rrection		
Purpose		Solvent co	rrection		
Connect to c	ycle type	Solvent co	rrection		
以上でステップの追加	は完了です。				
			.l.		
追加し キュテップ・	+心更に応	IT Door		umbor of ron	licatos Assaulstan
逗加したヘノッノレ	よい女に心			under of rep	mulates Assay step
preparations を適切に	設定します。				

🏧 Method Builder - A	Aain	
Overview	Verification results	
	The method has been verified and can be used to set up a run.	
<u>G</u> eneral Settings		
Assay Steps		
Cycle <u>T</u> ypes		
<u>V</u> erification >		
Setup <u>R</u> un		
	<	
Help	Save Save As	

メソッドの設定に不備が無ければ"The method has been verified and can be used to set up a run."と表示されます。間違いがある場合は該当部分が表示されるので、指示に従って修正します。

ī

確認後、Setup Run をクリックします。

	\checkmark	
🔤 Method Bu	ilder - Detection	×
Detection		
<u>F</u> low path:	2-1 V 1,2 3,4 2-1	
<u>H</u> elp	4-3ckext >lose	

 \downarrow

適切な Flow path を選択し、Next をクリックします。

Verification をクリックします。

128 6. メソッド詳細

ariat	ile values for Assay Ste	p Sample		Sample 1				
	Sample solution	MW (Da)	Conc (1) (nM)	Conc (2) (nM)	Conc (3) (nM)	Conc (4) (nM)	Conc (5) (nM)	
	Sample 1	300	0	0	0	0	0	
	Sample 1	300	0	0	0	0	0	
	Sample 1	300	31.25	62.5	125	250	500	
	Sample 2	300	0	0	0	0	0	
	Sample 2	300	0	0	0	0	0	
	Sample 2	300	31.25	62.5	125	250	500	

Assay steps のすべてのステップについて必要事項を入力します。各ステップをクリックする と、画面下にサンプル情報が入力できるようになります。入力する必要のないカラムが出て きた場合は、空欄のまま次に進みます。

補足 6-4. Excel ファイルで作成したサンプ<mark>ル情報の入力</mark>

Excel ファイルで作成したサンプル情報を移行するには、Excel での保存時、タブ区切りのテキ ストファイル(拡張子は txt)を選択します。タブ区切りで保存したデータを上記画面で開き、 コピーペーストで入力します。

すべての項目を入力後、Next >をクリックします。

Cycle	Assay step name	Sample 1 Solution	Sample 1 MW (Da)	Sample 1 Conc (1) (nM)	Sample 1 Conc (2)
1	Startup	buffer		1	,
2	Startup	buffer			
3	Startup	buffer			
4	Solvent correction				
5	Control sample	Negative control			
6	Control sample	Positive control			
7	Sample	Sample 1	300	0	0
8	Sample	Sample 1	300	0	0
)	Sample	Sample 1	300	31.25	62.5
10	Sample	Sample 2	300	0	0
1	Sample	Sample 2	300	0	0
12	Sample	Sample 2	300	31.25	62.5
13	Control sample	Negative control			
14	Control sample	Positive control			
<					

サイクルリストが表示されます。上から順番に測定が実行されます。 問題が無ければ、Next >をクリックします。

<u>6-3. メソッドの実行</u>

🔤 Method Builder - System Prep	arations 🛛 🔀
Prime before run Nor <u>m</u> alize detector	
Temperature settings Analysis temperature: Sample compartment temperature:	25 (°C) 25 (°C)
	< <u>B</u> ack Next > Close

測定を始める前に Prime を実施する場合には、Prime before run にチェックを入れます。 設定後、Next >をクリックします。

Method Builder - Rack Positions						
Reagent Rack 2	Position	¥olume (µl)	Content	Туре	Sample 1 MW (Da)	Sa Cor
	R1 A1	58	Negative control	Control sample		
	R1 A2	58	Negative control	Control sample		
	R1 A3	58	Positive control	Control sample		
,)0407)0407)1	R1 A4	58	Positive control	Control sample		
	R1 B1	88	Sample 1	Sample	300	0
	R1 B2	88	Sample 1	Sample	300	0
	R1 B3	88	Sample 1	Sample	300	0
	R1 B4	88	Sample 1	Sample	300	0
ABCDEFG	R1 B5	88	Sample 1	Sample	300	0
36 Well Microplate 🛛 🖌 😽	R1 B6	88	Sample 1	Sample	300	0
	R1 B7	88	Sample 1	Sample	300	0
	R1 B8	88	Sample 1	Sample	300	0
² 000000	R1 B9	88	Sample 1	Sample	300	0
"0000000	R1 B10	88	Sample 1	Sample	300	0
	R1 B11	88	Sample 1	Sample	300	31.25
	R1 B12	88	Sample 1	Sample	300	62.5
	R1 C1	88	Sample 1	Sample	300	125
*000000	R1 C2	88	Sample 1	Sample	300	250
	R1 C3	88	Sample 1	Sample	300	500
	R1 C4	88	Sample 2	Sample	300	0
	R1 C5	88	Sample 2	Sample	300	0
* 0000 0000	R1 C6	88	Sample 2	Sample	300	0
	R1 C7	88	Sample 2	Sample	300	0
	R1 C8	88	Sample 2	Sample	300	0
	R1 C9	88	Sample 2	Sample	300	0
	R1 C10	88	Sample 2	Sample	300	0
	R1 C11	88	Sample 2	Sample	300	0
A B C D E F G H	R1 C12	88	Sample 2	Sample	300	0
	<					>
<u>H</u> elp <u>M</u> enu ▼ <u>Ei</u> ect Rack				< <u>B</u> ack	<u>N</u> ext >	<u>C</u> lose

右側の表でサンプルの位置とサンプル量 (µl)を確認します。表中のサンプルをクリックする とそれに対応するラック上の位置が強調表示されます。位置と容量を確認しながらバイアル およびサンプルをラックにセットします。

Eject Rack をクリックして、**Rack tray port** を開きます。

ラックトレイを奥まで挿入し、OK をクリックします。Eject Rack Tray ダイアログが閉じた 後、Rack Positions ダイアログ右下の Next をクリックします。

補足 6-5. サンプル位置の変更

サンプル位置は、上記画面に切り替わった時点で自動的に設定されます。あらかじめサンプ ル位置が決まっているプレートを使用する場合は、画面左下の Menu → Export Positions... を実行し、サンプル位置をタブ区切りのテキストファイルとして保存します。必要事項を変 更した後ファイルを保存し、Menu → Simple Position Import...でそのファイルを読み込むと、 サンプル位置が変更されます。

📟 Method Builder - Prepare Run Protocol 📃 🗆 🔀
Tahoma • 10 • B I U
 Prepare Run Protocol Make sure the correct sensor chip is docked. Make sure all samples & reagents are loaded in the rack and microplate according to the Rack Positions setup. (Vials should be sealed with rubber caps and microplate with adhesive foil.) Place the buffer(s) on the left hand tray and insert the correct tubing(s), see below. Notel Standby after run will use buffer A. Make sure there is fresh water in the water bottle on the right hand tray. If necessary, empty the waste buttle before start of the run.
Estimated run time: 3 h 0 min (excluding conditional statements, temperature changes and standby flow) Estimated buffer consumption:
PBS.5 % DMS0 A tleast 100 ml plus 55 ml/day for standby after run
Help Menu V (Back Save As) Glose

測定時の基本的な共通注意事項と測定時間、必要なランニング緩衝液容量が表示されます。 Start をクリックします。

 \downarrow

設定したテンプレートを保存するかどうか、メッセージが表示されます。保存する場合は、 Save as で C:¥Bia Users¥Templates フォルダまたは Bia Users の各自のフォルダに保存しま す。保存しない場合は、Don't Save を選択します。

Save in:に測定結果の保存先を設定し、File name にファイル名を入力して、Save すると測定が開始されます。

↓

Ţ

終了後、装置は Standby flow 状態になります。

 \downarrow

測定データは入力したファイル名で自動保存され、Biacore S200 Evaluation Software が自動的 に起動します。解析およびデータの評価は各章を参照してください。

7. メンテナンス

システム内部に設置されているマイクロ流路系(IFC)は、消耗品であり、使用するサンプル の性状や使用頻度に応じて、耐久月数が異なります。より長くマイクロ流路系を使用するた めに、システム使用毎のメンテナンスの実施を推奨します。

システムのメンテナンスは既定のメンテナンスプログラムに従って実行します。プログラム はスタートスクリーン画面の **Tools タブ**にあります。

ランニング緩衝液として、超純水を使用します。また、メンテナンス時はメンテナンス用試 薬によりセンサーチップ表面に固定化しているリガンドは破壊されてしまうので、必ず Sensor Chip Maintenance(もしくは使用済みセンサーチップ)を使用してください。

1

システム温度は、25℃に設定します。

メンテナンスコマンドの呼び出し

スタートスクリーン画面の Tools タブを選択します。

		\checkmark		
Biacore S200 Control Software				- • •
File View Run Tools Help				
i 🖻 🖩 ¥ 🏬 🗲 🖻 🖉 🛜				
Templates Tools				
Main Tools			Test and Service Tools	
System Setup Tools	System Tools	Maintenance Tools		
Eject Chip	Standby	Desorb	System Check	
Insert Chip	Stop Standby	Desorb and Sanitize	Software Problem Report	
Prime	Shutdown 🤯	Empty Buffer Tubing	Flow System Wash	
MultiPrime		Wash Buffer Tubing		
Normalize		Superclean		
Eject Rack				
Rack Illumination On				
Rack Illumination Off				
Set Temperature				
Online - COM1 Temperature: 25.00 °C	Sensor chip: CM5			
Sample compartment temperature - current: 25 °C set:	25 °C Running standby, remaining time: 7.0 da	ys		.:

メンテナンスに必要な試薬

通常のメンテナンスに必要な試薬は、Biacore Maintenance Kit, type 2 (BR100651)に含まれて います。

BIAdisinfectant solution	(conc.)	10 ml x 3
BIAnormalizing solution		90 ml
HBS-N Buffer		10 X 50 ml
Sensor Chip Maintenance		1枚

BIAdesorb solution 1 は 4 ℃で保存すると結晶が析出します。BIAdesorb solution 1 のみ室温で保存してください(その他のキット内試薬は、4 ℃で 保存してください)。 Sensor Chip Maintenance は、金表面が導入されていないチップ表面のため、

SPR シグナルは検出できません。埃などの汚れが付着しないように、キット 中の専用の袋に入れるか、パラフィルムで巻いて保存してください。(ガラ ス基板に汚れが付着したまま使用すると、検出不調の原因となります。)

補足 7-1 メンテナンスチップへの交換方法
Toolbar の Tools→Eject Chip、または Tools タブの System Setup Tools→Eject Chipを選択し
ます。
\downarrow
Biacore S200
This will eject the sensor chip
Help Eject Chip Cancel
Eject Chip をクリックします。
◆ センサーチップポートが開くのでセンサーチップを取り出し、メンテナンス用センサーチッ
プ(Sensor Chip Maintenance)をセットします。あわせて、ランニング緩衝液ボトルを超純水
ボトルに交換します。
↓
Insert Chip
New chip
New chip
Chip type: Maintenance
Chip.id: 150901-0405:1965952
Chi <u>p</u> lot no: (optional)
Help Dock Chip Cancel
L Insert Chip ダイアログが表示されるので Chip type: Maintenance を選択後、Chip id:を入力
し、 Dock Chip をクリックします。
Dock が完了すると自動的に Standby flow 状態になります。
Dock 終了後は、超純水で Prime を実行します。

注意)メンテナンスチップのガラス基板上に埃や粒子などが付着していないことを確認して から Dock してください。

7-1. システムの洗浄

7-1-1. Desorb

IFC および、サンプルラインに付着した汚れ等を洗浄するプログラムです。 1 週間に 1 回必ず実施してください。実験内容の変更ごとに実施することを推奨します。な お、クルードサンプルや不溶性サンプルを使用時には、実験終了後に実施してください。所 要時間は、約 20 分です。測定温度および Sample compartment 温度は、20 ℃以上で実施し てください。

試薬

Biacore Maintenance Kit, type 2 BIAdesorb solution 1 (0.5 % SDS) BIAdesorb solution 2 (50 mM Gly-NaOH、 pH 9.5)

ランニング緩衝液

超純水

Maintenance Tools → Desorb を選択します。

	\downarrow
	Desorb
	This procedure removes adsorbed material from the flow system. Total run time is about 20 minutes.
	NOTE: Use the Maintenance Chip or a used chip for this procedure. The ligand on the sensor chip may be damaged by the solutions used. Do not run this procedure below 20°C.
	< Back Next > Close
内容を確認後、 Next >	をクリックします。

内容を確認後、Next >をクリックします。

BIAdesorb solution 1 および、BIAdesorb solution 2 を、指示された量分注してラックにセットし、 Start をクリックします。

↓

l

Desorb 終了後、装置は自動的に Standby flow の状態になります。そのままの状態で 3~4 時間放置か、もしくは Prime を 3 回実施します。

7-1-2. Desorb and Sanitize

すべてのフローシステムの滅菌および洗浄するプログラムです。

<u>1ヶ月に1回、必ず実施してください</u>。所要時間は、約1時間です。測定温度および Sample compartment 温度は、20 C以上で実施してください。

バッファーチューブ (チューブ A, B, C, D)の洗浄後、A 以外のチューブ (チューブ B, C, D)を 空にして終了します。

試薬

Biacore Maintenance Kit, type 2 BIAdesorb solution 1(0.5 % SDS) BIAdesorb solution 2(50 mM Gly-NaOH、pH 9.5) BIAdisinfectant solution 原液 6 ml を超純水 80 ml で希釈

ランニング緩衝液

超純水 HEPES または Tris 緩衝液

Maintenance Tools \rightarrow Desorb and Sanitize を選択します。

内容を確認後、Next >をクリックします。

内容を確認後、Next >をクリックします。

Desorb and Sanitize
Step 1
Place 25 ml BIAdesorb Solution 1 on the left hand tray and insert all four pump inlet tubes. Place 15 ml BIAdesorb Solution 1 on the right hand tray and insert the water inlet tube.
< <u>B</u> ack Start Gose

BIAdesorb Solution 1 を 25 ml, 15 ml の 2 本に分注します。

チューブ A, B, C, D は、すべて BIAdesorb Solution 1 ボトル(25 ml)にセットします。超純水チ ューブを、BIAdesorb Solution 1 ボトル(15 ml)にセットします。 Start をクリックします。

ステップ1の終了後、自動的にステップ2のダイアログが表示されます。

Desorb and Sanitize	×
Step 2	
Wipe the pump inlet tubes with a moist tissue.	
Place 25 ml Bl/Adesorb Solution 2 on the left hand tray and insert all four pump inlet tubes. Place 15 ml Bl/Adesorb Solution 2 on the right hand tray and insert the wa inlet tube.	iter
< <u>B</u> ack Start Clos	;e

BIAdesorb Solution 2 を 25 ml, 15 ml の 2 本に分注する。

チューブ A, B, C, D は、すべて BIAdesorb Solution 2 ボトル (25 ml) にセットします。超純水チ ューブを、BIAdesorb Solution 2 ボトル (15 ml) にセットします。 Start をクリックします。

↓

ステップ2の終了後、自動的にステップ3のダイアログが表示されます。

Desorb and Sanitize			—
Step 3			
Wipe the pump inlet tubes with	n a moist tissue.		
Place 50 ml diluted BIAdisinfed four pump inlet tubes. Place 30 ml diluted BIAdisinfed water inlet tube.	tant Solution or	n the left hand tray In the right hand tra	/ and insert all ay and insert the
	< <u>B</u> ack	<u>S</u> tart	Close

BIAdisinfectant Solution を 50 ml, 30 ml の 2 本に分注します。

チューブ A, B, C, D は、すべて BIAdisinfectant Solution ボトル(50 ml)にセットします。超純 水チューブを、BIAdisinfectant Solution ボトル(30 ml)にセットします。

Desorb and Sanitize	×
Step 4	
Wipe the pump inlet tubes with a moist tissue.	
Place water on the left hand tray and insert all four pump inlet tubes. Place water on the right hand tray and insert the water inlet tube.	
< <u>B</u> ack Start Glose	•

ステップ3の終了後、自動的にステップ4のダイアログが表示されます。 チューブA, B, C, D、および超純水チューブをすべて超純水ボトルにセットします。 Start をクリックします。

ステップ4の終了後、自動的にステップ5のダイアログが表示されます。

Desorb and Sanitize		×
Step 5		
Place tube A in a HEPES or T	RIS buffer.	
Recommended concentration Let tubes B,C and D hang in th	10-50 mmol/l. he air.	
	< Back Start Close	e

J

チューブ A は、HEPES または Tris 緩衝液ボトルに入れます。チューブ B, C, D は空気を吸える ようにボトルから取り出します。

Start をクリックします。

	Desorb and Sanitize	
	The Desorb and Sanitize procedure is completed.	
	Allow the system to run in standby mode for at least 3-4 hours before performing a run.	
	< <u>B</u> ack <u>N</u> ext > <u>D</u>ose	
ステップ 5 の終了後	、装置は自動的に Standby flow の状態になります。	この状態で 3~4 時
間放置します。もし	くは、Prime を 3 回実施します。	

Close をクリックして終了します。

7-1-3. Superclean

Desorb and Sanitize の実施でも洗浄が不十分な場合に実行する、強力な洗浄プログラムです。 IFC およびサンプルループに吸着したタンパク質、化合物を洗浄除去します。(定期的に実施 する必要はありません。)

Ţ

サンプルがタンパク質の場合と、化合物の場合で、使用する洗浄溶液が異なります。 所要時間は、約 90 分です。

Biacore[®]S200 日本語取扱説明書

試薬

次の試薬を調製してください。

タンパク質用:

1% acetic acid 0.2 M sodium bicarbonate 6 M guanidine-HCI 10 mM HCI

低分子用:

1% acetic acid 0.2 M sodium bicarbonate 50% DMSO 10% DMSO

ランニング緩衝液

50 ℃に温めた超純水

MaintenanceTools → Superclean を選択して、画面の指示に従って試薬をセットして実行してください。

7-1-4. Empty Buffer Tubing

B,C,D のバッファーチューブを超純水で洗浄後、チューブの中身を空にするプログラムです。 Buffer scouting またはシステムチェックで B,C,D のチューブを使用後、使用する予定がない場 合に実行します。所要時間は、約 20 分です。

<u>ランニング緩衝液</u>

超純水 70%エタノール溶液

Maintenance Tools \rightarrow Empty Buffer Tubing を選択します。

\checkmark	
Empty Buffer Tubing	
This procedure empties all four buffer selector inlet tubes. The procedure is divided into three steps. Total run time is about 20 minutes.	
Required solutions:	
Deionized water 70% ethanol	
< <u>B</u> ack <u>N</u> ext > <u>C</u> lose)

Next >をクリックします。

\downarrow				
Empty Buffer Tubing				
Step 1 Place a bottle containing deionized water on the left hand plate and insert the four buffer inlet tubes.				
< <u>B</u> ack Start Close				

本体左側のチューブA,B,C,Dをすべて超純水ボトルにセットします。Startをクリックします。

ステップ1終了後、自動的にステップ2のダイアログが表示されます。

Empty Buffer Tubing	×
Step 2	
Place a bottle containing at least 10 ml 70% ethanol on the left band of	plate and
insert the four buffer inlet tubes.	
< <u>B</u> ack Start	Close

本体左側のチューブ A,B,C,D すべてを 70%エタノール溶液 (10 ml) のボトルにセットします。 Start をクリックします。

Ţ

ステップ2終了後、自動的にステップ3のダイアログが表示されます。

本体左側のチューブ A,B,C,D を、空気が吸えるようボトルから出します。 Start をクリックします。

\downarrow	
Empty Buffer Tubing	—
The Empty Buffer Tubing procedure is completed.	
< <u>B</u> ack <u>N</u> ext >	Close

Close をクリックします。B,C,D のチューブは、キムワイプで拭いて、チューブホルダーに収納してください。

7-1-5. Wash Buffer Tubing

A,B,C,D のバッファーチューブを洗浄するプログラムです。 界面活性剤または BSA 等、吸着しやすい物質を含んだランニング緩衝液を使用後、それらの 物質を含んでいないランニング緩衝液に切り替えて実験する場合に実行します。 所要時間は、約 30 分です。

試薬

Biacore Maintenance Kit, type 2 BIAdesorb solution 1 (0.5 % SDS) BIAdesorb solution 2 (50 mM Gly-NaOH、 pH 9.5)

ランニング緩衝液

超純水

Maintenance Tools \rightarrow Wash Buffer Tubing を選択します。

 \downarrow

Select tubes to wash.	 	 	
Tube A			
Tube B Tube C			
Tube D			
All four tubes			

洗浄するチューブを選択し、Next >をクリックします。

\checkmark	
Wash Buffer Tubing	×
Required solutions (from Maintenance Kit):	
BIAdesorb solution 1, about 20 ml BIAdesorb solution 2, about 20 ml	
	_
< <u>B</u> ack <u>N</u> ext > <u>O</u> ose	

1

内容を確認後、Next >をクリックします。

\downarrow	
Wash Buffer Tubing	×
Step 1 Place 20 ml Blådesorb Solution 1 on the left hand trav and insert tube A	
Trace 20 millionauesolo Solution Fontine leit hand day and insert due A.	
< <u>B</u> ack Start Glose	•

最初に選択したチューブを BIAdesorb Solution 1 (20 ml) ボトルに入れ、Start をクリックします。

 \downarrow

ステップ1終了後、自動的にステップ2のダイアログが表示されます。

	Wash Buffer Tubing
	Step 2
	Wipe the tube with a moist tissue.
	Place 20 ml BIAdesorb Solution 2 on the left hand tray and insert the tube.
	< <u>B</u> ack Start Oose
チューブを BIAdeso	

ます。

ステップ2終了後、自動的にステップ3のダイアログが表示されます。

Biacore[®]S200 日本語取扱説明書

Wash Buffer Tubing
Step 3
Wipe the tube with a moist tissue.
Place buffer or water on the left hand tray and insert the tube.
< <u>B</u> ack <u>Start</u> <u>Close</u>

チューブを超純水ボトルに入れ、**Start** をクリックします。 ↓

ステップ3終了後、自動的に以下のダイアログが表示されます。

Wash Buffer Tubing	- ×
The Wash Buffer Tubing procedure is completed.	
2	
< <u>B</u> ack <u>N</u> ext >	Close

Close をクリックします。

使用しないチューブはチューブホルダーに収納してください。

7-2. シグナルの校正(Normalize)

SPR 検出器の校正を行います。ベースラインノイズを押さえることができます。センサーチ ップを新規にセットした際や、定期システムチェックに合わせて実施することを推奨します。 (測定毎に実施する必要はありません。)

試薬

Biacore Maintenance Kit, type 2 BIAnormalizing solution

(室温に戻して使用してください。冷えているとエラーが出ます。)

センサーチップおよびランニング緩衝液

実験に使用するセンサーチップおよびランニング緩衝液 (メンテナンスチップでは Normalize は正常に実施されません。)

System Setup Tools → Normalize を選択します。

↓	
Normalize	×
This procedure normalizes the detector signal. Total run time is about 9 minutes.	
Required solution (from Maintenance Kit):	
BIAnomalizing solution	
< <u>B</u> ack <u>N</u> ext > <u>C</u> lose	

Next >をクリックします。

 \downarrow

バイアルをセット後、Start をクリックします。センサーグラムは表示されません。

Normalize	
Normalizing, please wait.	
Time left: 00:08:29	_

正常に実施された際には、下記ダイアログが表示されます。

Normalize		×
The Normalize procedure is c	completed.	
	< <u>B</u> ack <u>N</u> ext >	Close

自動的に Standby flow 状態になります。

7-3. システムチェック

装置の診断を行うプログラムです。このプログラムは Desorb and Sanitize による洗浄後に実行 してください。シグナルのドリフトや、エアースパイクの混入が激しい場合等に実施します。 使用頻度が高い場合、定期的に実行することを推奨します。所要時間は、約1時間です。

試薬

Biacore Maintenance Kit, type 2 BIAtest solution

ランニング緩衝液

<u>HBS-N Buffer</u> 150 ml 程度(メンテナンスキットの 10X Buffer を希釈して使用します) 超純水

必要な消耗品

新品の Series S Sensor Chip CM5 BIAtest solution 1.5 ml プラスチックバイアル

新品のセンサーチップ CM5 を Dock 後、HBS-N 緩衝液で Prime を実施します。

Test and Service Tools \rightarrow System Check を選択します。

*	
System Check	
Select test(s) to run.	
This procedure should be run at 25°C with a new Sensor Chip CM5 and with HBS-N as running buffer. Choose Close if you need to change the sensor chip, reset the temperature or change running buffer.	
Reagent pumps and blank injection	
Mox Refractometer performance	
✓ Injections	
Noise	
Buffer selector (optional)	
	-
Tests if the peristaltic pump is in order and that a sample injection with buffer from the reagent supply block is all right.	
< <u>B</u> ack <u>N</u> ext > <u>C</u> lose]

System Check ダイアログが表示されます。通常、全項目にチェックをつけて、Next >をクリ ックします。Buffer selector 機能をテストする必要がなければ、チェックを外します。

A のチューブを HBS-N Buffer 10X を希釈したボトルに入れます。Buffer selector 機能をテスト する際には、B,C および D のチューブを超純水の入ったボトルに入れます。 Next >をクリックします。

BIAtest Solution を、1.5 ml プラスチックバイアルに 695 µl 分注してラックポジションにセット します。また、空の 1.5 ml プラスチックバイアル 4 本をキャップをしてラックポジションに セットします。Start をクリックします。

 \downarrow

続いて、測定結果の保存先を指定します。File name を入力して、Save すると測定がスタートします。

Buffer selector 機能テストを実施した際には、システムチェック実行後、B,C および D のチュ ーブを使用しない場合は Empty Buffer Tubing を実行してください。

 \downarrow

		Sys	tem	Che	ck			Í
Name:				Da	ite:			
Instrument: Created By: Date: File:	Biacore S20 Biacore S20 26-Aug-201 20150826s	00 00 Control 5	Software	Ins Ver Ter	trument id: sion: nperature:	1965952 1.0 25.0 ℃		
Reagent pum	ıр							
Water Buffer	-2374 -1					(-2600 to -1400 RU) (-50 to 50 RU)	Pass Pass	Ξ
Mixing								
Mix 1 Mix 2 Difference	48.0 47.9 0.2					(45.0 to 55.0 %) (45.0 to 55.0 %) (<=5.0 %)	Pass Pass Pass	
Refractomete	r							
Biatest solution Variation Baseline level	Fc 1 21947 23584	Fc 2 21989 22917	Fc 3 21876 22692	Fc 4 21986 23501	112	(21400 to 23600 RU) (<=600 RU)	Pass Pass	
Variation					892	(<=3000 RU)	Pass	
Injections	5.4	5- 3	F- 2	5.4				
Rise Fall Leakage Dual injection, firs Dual injection, sec	FC 1 99 0 -2 st part cond part	100 0 0	rc 3 100 0 21899 -2230	-2 21985 -2189		(>=90 %) (<=5 %) (<=100 RU) (21400 to 23600 RU) (-2600 to -1400 RU)	Pass Pass Pass Pass Pass	

測定が終了すると、チェック結果が自動的に表示されます。各チェック項目について測定値が正常値範囲内であれば"Pass"、範囲外であれば"Fail"と診断されます。

Fail が表示されている項目がある場合には弊社技術サービス部にご相談ください。(保存した システムチェックのデータファイル(拡張子.blr)をメールにて添付してお送りください。)

8. 実験の終了

実験が終了した際には、次のいずれかの方法でシステムを維持できます。
スタンバイ状態で放置 7日以内に使用する場合
電源を落として終了 7日以上使用しない場合

8-1. スタンバイ状態での放置

測定が終了すると、自動的に Standby flow 状態になります。 チューブ A にセットしたランニング緩衝液で、65 ml/24 時間の流速を最長 7 日間継続しま す。ランニングバッファーを涸らさないように注意してください。廃液ボトルの空き容量に も注意してください。スタンバイ状態であるか否かは、Status bar で確認できます。 なお、スタートスクリーンの Tools タブ画面の System Tools→Standby を選択するとスタン バイを実行できます。スタンバイを終了する際には、Stop Standby を選択してください。

8-2. 電源の落とし方

電源を落とす前には、Desorb and Sanitize で洗浄を実行してください。

Toolbar の Tools→Eject Chip、またはスタートスクリーンの Tools タブ→System Setup Tools →Eject Chip を選択します。

Eject Chip をクリックします。

センサーチップポートが開くのでセンサーチップを取り出し、Biacore S200 Control Software を 終了します。パソコンのシャットダウン、Biacore S200 の本体電源を落とします。

注意)電源を落とす場合は、システム内部が超純水で置き換わっているかどうか確認の上、 電源を落としてください。バッファーのままだと、塩が析出して流路が詰まります。

8-3. センサーチップの保存

取り出したセンサーチップは、以下の2つの方法で保存できます。

リガンドは保存中に変性する可能性があるので、再使用の際にはポジティブコントロールサ ンプルのレスポンスからリガンドの活性を確認してください。

再度、装置にセットする際には、ガラス基板上に埃や粒子などが付着していないことを確認して Dock してください。

Biacore[®]S200 日本語取扱説明書

ドライ状態での保存

取り出したセンサーチップにパラフィルムを巻いて 4℃で保存します。 安定なサンプルを固定したセンサーチップの保存に用います。

ウェット状態での保存

取り出したセンサーチップのシート部分をカバーから抜き取り、シートだけを容器(50 ml 容のふた付きプラスチック遠心チューブ等)に分注した HBS-EP+等の緩衝液に浸し、4 ℃で保存します。

シートの取り出しと保存

センサーチップはカバーとシートから構成されています。

シートの金基板の窪んでいる面はリガンドが固定化されています。

平らな面は検出器が接触します。<u>リガンド固定化面には触れないよう注意してください。</u>下 図のようにピンセットにてシートを抜き出し、緩衝液に浸して保存します。

保存していたシートからの緩衝液成分の除去とカバーへの収納

再利用する際は、緩衝液に浸していたシートをカバーに収めます。シートの水分を取り除い てからカバーに収めてください。 プラスチックの部分および検出面

キムワイプで拭き、超純水で湿らせたキムワイプで再度拭きます。さらに乾いたキムワイプ で拭きます。

固定化面

キムワイプなどを"こより状"に細くして、金基板の中央部分に触れないように、四隅から水分 を吸収します。

検出面

固定化面

埃に注意しながらカバーに収めます。下図のように、検出面が表になる向きで、ピンセット にてカバーの左側から挿入します。

リガンド固定化面を表にして挿入した場合には最後までシートが入りません。

Add Report point	20
After run	
Aim for immobilized level	
Analysis temperature	
Assay step preparations	
Assay Steps	
Automatic Positioning	63
Base Line	49
Baseline	20
Biacore Maintenance Kit	
Bivalent Analyte	80
Blank immobilization	
Buffer settings	
Bulk Effect	44
Capture	
Chi ²	
Concentration unit	
Concentrations per cycle	
Connect to cycle type	
Contact time	
Copy Graph	
crude	
Custom Methods	
Cvcle Run List	
Cycle Types	
Data Collection rate	
Desorb	
Desorb and Sanitize	
Detection	
Dissociation time	
DMSO	
Dock Chip	
EDC	
Eiect Rack	
Eiect Rack Trav	
Empty Buffer Tubing	
End manual run	
End Run	
Enhancement	
Evaluation Variables	
Export Curves	
Extra wash after injection with	
Flow path	
Flow rate	
Fraction	
General	
General Settings	
Heterogeneous Analyte	
Heterogeneous Ligand	
High performance	
High viscosity solution	
Immobilization	
Immobilization Results	43
Inject command	
K	51 52 82 83 85
κ	
	44 51 52 53 82
Keyword Table	
Kinetics/Affinity	
I ow Sample consumption	57 115
Manual run	1 <i>A</i>

Method Variables	
Methods	
Mix with	
New chip	
NHS	
Normalize	
Number of replicates	
Overview	
pH Scouting	
Predip	
Prime	
Print	
Purpose	
Quality Control	
Rack tray	
Reagent rack, Type 1	
Reagent rack, Type 2	
Recurrence	
Reference line	
Reference Line	
Regeneration	
Repeat assay step within	
Report	
Report point	
 Reg	
Residuals	
Response Bound	
Response Final	
Result To Excel	
Reuse chip	
RI	
R	
Run	
Sample and reagent rack	
Sample compartment temperature	
Sample solution	
SE	
Sensor Chip Maintenance	
Sensorgram Adjustment	
Show All Curves	
Show Curves of Same Type	
Show Only Current Curve	
Single cycle kinetics	
Solvent correction	
Specify contact time and flow rate	36
Stabilization period	58.116
Standard error	
Standby flow	. 9. 21. 33. 39. 49. 65. 124. 127. 128. 131. 135. 138
Startup	55.57.60
Ston Run	66
Surface Prenaration	27 35 41 54
System Check	136
Target level	
Temperature	42 16 20
Thermodynamics	
Two state Reaction	۰۸ ا
	ر ج
1 Jpc3	02 04
Verification	52,84 50 107 101
Verifiveation	
Vial/wall nosition	
Vial/ Well PUSILIUII	404 400
wasii bullel luuliy	

Biacore[®]S200 日本語取扱説明書

Wash solution	42
アイコンの説明	17
アフィニティー	51
アミンカップリングキット	24
アミンカップリング法	
アルデヒドカップリング法	
一時停止	
印刷	
エクセル形式ファイル	
エタノールアミン	
カーブフィッティング	
カイネティクス解析	
解離速度定数	
解離定数	
化学耐性	
画像データファイル	
キャリーオーバー	
緊急停止	
結合速度定数	51
固定化	
固定化量	23
サーフェイスチオールカップリング法	
再解析	
サイクルの切り替え	
再生条件	
再生溶液	
最大結合量	23
残差プロット	84
サンプル位置	
サンプル情報	67
シグナルの校正	
システムチェック	
至適アナライト濃度	53
試料必要量	
シングルサイクル法	
スクリーニング	23
スタンバイ	
ステータスマーク	83
センサーチップの固定化履歴	7
センサーチップの挿入	5
センサーチップの保存	
測定の終了	
ダミーラン	57
テキスト形式ファイル	
電源の落とし方	

ノーマライズ	101
バイアル	12
反応速度定数	44
非線形最小二乗法	52
標準誤差	84
ファイルのアイコン	
フィッティング	84
プーリング機能	63
プレコンセントレーション効果	
マストランスポートリミテーション	
マニュアル測定	14
マルチサイクル法	51
メンテナンス	
有機溶媒	
溶液効果	
溶媒補正	
ラックトレイ	
ラックの取り出し	
ランニング緩衝液の交換	9
ランニング緩衝液の種類	3
リガンド希釈液	
リガンドチオールカップリング法	
リファレンスセル	
リファレンスライン	
リファレンスラインウィンドウ	49
流速の変更	
流路の切り替え	
レポートポイント	19, 21, 49, 117
レポートポイント レポートポイントテーブル	19, 21, 49, 117

TEL: 03-5331-9336 機器アフターサービス (営業日の 9:00~17:30、音声案内に従い①を選択) FAX:03-5331-9324 (常時受付) 製品技術情報に関して (バイオダイレクトライン、営業日の 9:00~12:00、13:00~17:30) 音声案内に従い②を選択後、対象の製品別の番号を押してください。 ●:ÄKTA、クロマトグラフィー関連製品 ②:ビアコア関連製品 3:電気泳動関連製品、画像解析装置 ④: IN Cell Analyzer、ワットマン製品、その他製品 e-mail:Tech-JP@cytiva.com(常時受付) ▶納期/在庫お問合せ

(営業日の 9:00~12:00、13:00~17:30、音声案内に従い③を選択)

注)お問合せに際してお客さまよりいただいた情報は、お客さまへの回答、弊社サービスの向上、 弊社からのご連絡のために利用させていただく場合があります。

注)アナログ回線等で番号選択ができない場合はそのままお待ちください。オペレーターにつな がります。

www.cytivalifesciences.co.jp

■総合お問合せ窓口

論文に掲載いただく際の名称・所在地 Cytiva Tokyo, Japan

ジャパン株式会社

T169-0073

東京都新宿区百人町 3-25-1 サンケンビルヂン ケ

お問合せ:バイオダイレクトライン TEL:03-5331-9336 e-mail:Tech-JP@cytiva.com

グローバルライフサイエンステクノロジーズ 掲載されている内容は 2019 年 4 月現在のもので予 告なく変更される場合がありますのであらかじめ ご了承ください。掲載されている社名や製品名は、 各社の商標または登録商標です。お問い合わせに際 してお客さまよりいただいた情報は、お客さまへの 回答、弊社サービスの向上、弊社からのご連絡のた めに利用させていただく場合があります。