

Biacore T200

version 2

Instrument Handbook

基本操作編

目 次

1. セットアップ	1
1-1. 電源およびソフトウェアの起動	1
1-1-1. 電源の立ち上げ	1
1-1-2. ランニング緩衝液、超純水のセット	2
1-1-3. コントロールソフトウェアの起動	
1-2. システムの初期化	5
1-2-1. センサーチップの挿入	5
1-2-2. ランニング緩衝液による平衡化	9
1-2-3. 温度設定	10
1-2-4. 試料のセットと取り出し	11
2. 基本操作	14
2-1. マニュアル測定の実行方法	
2-1-1. 試料の添加	
2-1-2. レポートポイントの追加	20
2-1-3. 測定の終了	
2-2. ファイルの保存	
2-3. データの印刷	
3. 固定化	23
3-1. アミンカップリング法	25
3-1-1. リガンド希釈液の pH 選択	27
3-1-2. 基本プロトコールでの固定化	
3-1-3. 固定化量を調節して固定化 41	

4. マニュアル	測定による相互作用の)条件検討	45
----------	------------	--------------	----

5. 相互作用測定	53
5-1. <i>文</i> 心述 () と () 2-1. () 2	マルテリイクル法
5-1-1. フログブムの美门	27 留析
5-1-2. 5-1-3 平衡値解析	四年101
J-1-J. 因用1/1	
5-2. 反応速度定数・解離定数の算出	シングルサイクル法93
5-2-1. プログラムの実行	
5-2-2. カーブフィッティングによる	解析109
6. メソッドによるプログラムの)作成124
6-1. ウィザードで作成保存したプロク	「ラムの呼び出し125
6-2. メソッドの編集	
6-3. メソッドの実行	147
7. メンテナンス	
7-1. システムの洗浄	154
7-1-1. Desorb	
7-1-2. Desorb and Sanitize	
7-1-3. Empty Buffer Tubing	
7-1-4. Wash Buffer Tubing	
7-2. シグナルの校正	162
7-2-1. Normalize	
7-3. システムチェック	

8. 実験の終了	
8-1. スタンバイ状態での放置	
8-2. 電源の落とし方	
8-3. センサーチップの保存	167
9. センサーグラムの編集	169
9-1. ソフトウェアの起動	
9-2. ファイルの呼び出し	170
9-3. センサーグラムの編集	
9-3-1. センサーグラムの表示	
9-3-2. センサーグラムの表示の変更	
9-3-3. センサーグラムの添加開始時間、ベースライン合わせ	
9-3-4 . センサーグラムの不必要部分の削除	
9-3-5. センサーグラムの差し引き	
9-3-6. センサーグラムのノーマライズ	
9-4. グラフの編集	
9-5. データの移管	

1. セットアップ

1-1. 電源およびソフトウェアの起動

1-1-1. 電源の立ち上げ

テーブルタップの電源 → プリンター → モニター画面 → システム本体 → コンピュー ター の順番に電源を入れます。Windows のバージョンにより、パスワード(biacore)の入 力が必要な場合があります。

注)装置本体の電源を入れると、本体のフロント右上にあるすべてのインジケーター(LED ランプ)が数秒間点灯し、リセットされて消えます。その後 ready のインジケーターが点 灯し、temperature のインジケーターは点滅します。

<u>1-1-2. ランニン</u>グ緩衝液、超純水のセット

本体に向かって、左側トレイにランニング緩衝液ボトルをセットし、チューブ A を挿入します。廃液ボトル後ろの扉を開けて、ペリスターポンプのロックをします。

右側トレイに、超純水ボトルおよび廃液ボトルをセットして、対応するチューブを挿入します。

左側;ランニング緩衝液ボトル

右側;廃液ボトル・超純水ボトル

補足 1-2. チューブの	記置
本体左側	
チューブ A,B,C,D には、タ	クがついているので確認します
チューブA	ランニング緩衝液ボトルに入れます
チューブ B,C,D	必要に応じて複数のランニング緩衝液をセットできます
<u>本体右側</u> 超純水チューブ	超純水を入れた 500 ml ボトルに入れます
廃液チューブ(2本)	廃液ボトルキャップに接続します

補足 1-3. ランニング緩衝液の種類

ランニング緩衝液として、弊社から HBS 緩衝液および PBS 緩衝液を販売しています。

HBS-EP+ 10X (1000 ml, BR-1006-69)

0.1 M HEPES, 1.5 M NaCl, 30 mM EDTA, 0.5 % v/v Surfactant P 20 ⇒超純水で 10 倍希釈:0.01 M HEPES, 0.15 M NaCl, 3 mM EDTA, 0.05 % Surfactant P 20, pH7.4

HBS-P+ 10X (1000 ml, BR-1006-71)

0.1 M HEPES, 1.5 M NaCl, 0.5 % v/v Surfactant P 20 ⇒超純水で 10 倍希釈:0.01 M HEPES, 0.15 M NaCl, 0.05 % Surfactant P 20, pH7.4

HBS-N 10X (1000 ml, BR-1006-70)

0.1 M HEPES, 1.5 M NaCl

⇒超純水で 10 倍希釈: 0.01 M HEPES, 0.15 M NaCl, pH7.4

PBS 10X (1000 ml, BR-1006-72)

0.1 M phosphate Buffer, 27 mM KCl, 1.37 M NaCl

⇒超純水で 10 倍希釈: 0.01 M phosphate Buffer, 2.7 mM KCl, 0.137 M NaCl, pH7.4

PBS-P+ 10X (1000 ml, 28995084)

0.1 M phosphate Buffer, 27 mM KCl, 1.37 M NaCl, 0.5 % v/v Surfactant P 20 ⇒超純水で 10 倍希釈:

0.01 M phosphate Buffer, 2.7 mM KCl, 0.137 M NaCl, 0.05 % Surfactant P 20, pH7.4

実験目的にあわせて緩衝液を変更してください。 各自で調製する場合には、0.22 µm フィルターでろ過してください。

1-1-3. コントロールソフトウェアの起動

初期画面中の左下の Start から、All programs \rightarrow Biacore \rightarrow Biacore T200 Control Software のアイコンをクリックします。

1-2. システムの初期化

1-2-1. センサーチップの挿入

コントロールソフトウェアを起動すると Insert Chip ダイアログが表示され、同時に Biacore T200 本体右側のセンサーチップポートが自動的に開きます。

 \downarrow

Insert Chip	
💿 New chip	O Reuse chip
New chip-	
<u>C</u> hip type:	СМ5 💌
Chip jd:	080415-0219:12114
Chi <u>p</u> lot no:	(optional)
<u>H</u> elp	Dock Chip Cancel
Insert Chip	X
 New chip) O Reuse chip
New chip—	
<u>C</u> hip type:	СМ5 🗸
Chip jd:	CM4 CM5 Custom
Chi <u>p</u> lot no:	HPA L1 E NTA SA Maintenance
<u>H</u> elp	Dock Chip Cancel

Series S センサーチップ CM5

新品のセンサーチップを使用する際は、ONew Chip に、再利用のセンサーチップの場合は、 OReuse Chip にチェックを入れ、使用する Chip type を選択します。(再利用のセンサーチ ップを使用する場合は、7 ページを参照してください。)

	\downarrow
Insert Chip	
 New chip 	o O Reuse chip
New chip-	
<u>C</u> hip type:	СМ5 🗸
Chip jd:	080415-0219:12114
Chi <u>p</u> lot no:	(optional) 10119959
<u>H</u> elp	Dock Chip Cancel

Chip id は、日付-時間:システムシリアルナンバーが自動入力されます。必要に応じて変更可能です。Chip lot no (optional) を入力します。

センサーチップを印字面の両側の矢印の方向でセンサーチップポートに挿入します。セン サーチップポートを手で押して閉めます。

Insert Chip ダイアログの Dock Chip をクリックします。

\downarrow	
Biacore T200 Control Software	
🧽 Inserting chip: 1:32	

Dock が完了して自動的に Standby flow 状態になります。

Standby flow とは、セットしたランニング緩衝液 (チューブ A) を低流速で流し続けるモー ドです。最長 7 日間継続します。(バッファー必要量;65 ml/24 時間)

補足 1-5. センサーチップ挿入時の注意事項

センサーチップ内のプラスチックシートがセンサーチップのカバーにしっかり収まってい ることを確認してから挿入してください。 冷蔵庫に保存しているセンサーチップは、室温に戻してから Dock してください。 センサーチップポートを閉じた後、センサーチップを取り出す必要がある場合は、一旦 Insert Chip のダイアログを Cancel します。Toolbar の Eject アイコン (『))を選択して、 Eject Chip をクリックしてください。 Insert Chip ダイアログを閉じてしまった場合、Toolbar の Insert アイコン (『))を選択す ると、再度ダイアログが表示されます。

Reuse:で、そのセンサーチップに対応した id 番号を選択し、Detailsをクリックすると 固定化履歴が表示されます。 Chip Id: Chip lot no: First use date: 090507-102312114 5/7/2008 Chip id: IFC type: CM5 IFC type: CM5 IFC ID INTERNATION Final Response Ligand Result file For I For I For I Final Response Ligand Result file For I For I For I Final Response Ligand Result file For I For I For I Final Response City Internation of Action of Action of Action of Action I Final Response City I for I Fo	Reuse:で、そのセンサーチップに対応した id 番号を選択し、Detailsをクリックする 固定化履歴が表示されます。 Chip Id: Chip Id: Chip Id no: First use date: 080507-1029:12114 577/2008 Chip IfC type: CM5 IFC type: CM5 IFC ID IF		/ ロク か衣;	示されよう。 Insert Chip へNew chip Reuse chip Rguse: CM5: Ic Chip type: CM Chip type: CM Chip tot no: <u>H</u> elp	Reuse chip =080507-1029:12114 5 J507-1029:12114 <u>Dock C</u>	Dețails Chip Cancel
Chip CM5 IFC type: IFC105 Flow cell Immobilization date Final Response [RU] Ligand Result file Fc=1 Immobilization Final Response (RU) Ligand Result file Fc=2 Immobilization Final Response (RU) Ligand Result file Fc=3 Immobilization Final Response (Cital Users\T100Manual\CSK\Immobilization of antibody.blr Immobilization of Immobilization of Immobilization of Immobilization of Immobilization of Immobilization of Immobilization of Immobilization of Immobilization of Immobilization of Immobilization of Immobilization of Immobilization of Immobilization o	Chip CM5 IFC type: IFC105 Flow cell Immobilization date Final Response [RU] Ligand Result file Fc=1 Immobilization Immobilization Result file Fc=2 Immobilization Immobilization Immobilization Fc=3 Immobilization Immobilization Immobilization Fc=4 5/7/2008 353.2 antibody C:\Bia Users\T100Manual\C5K\immobilization of antibody.blr	euse:で、 国定化履歴 Chip Propert Chip id: 080507-1029:1	そのセンサ・ 歴が表示され ies 2114	ーチップに対ル ます。 Ch	芯した id 番号を選 ip lot no:	選択し、Detailsをクリックすると、 X First use date: 5/7/2008
Flow cell Interception Ligand Result file Fc=1 [RU] Ligand Result file Fc=2 Fc=3 Fc=4 5/7/2008 353.2 antibody E E E E E E Fc=4 5/7/2008 353.2 antibody Ci\Bia Users\T100Manual\CSK\immobilization of antibody.blr E E E E E E E E E E E E	Flow cell Interversion date Interversion (Ru) Fc=1 [RU] Ligand Result file Fc=1 [Fc=2 [Fc=3 [Fc=3 Fc=4 5/7/2008 353.2 antibody Ligand C:\Bia Users\T100Manual\CSK\immobilization of antibody.blr	Chip CM5	Immobilization	IF(IFC	2 type: :105	[]
Fc=4 5/7/2008 353.2 antibody C:\Bia Users\T100Manual\C5K\immobilization of antibody.blr 世elp Close 在認後、Close をクリックします。	Fc=4 5/7/2008 353.2 antibody C:\Bia Users\T100Manual\CSK\immobilization of antibody.blr Uelp Close 在認後、Close をクリックします。	Flow cell Fc=1 Fc=2	date	[RU]	Ligand	Result file
全認後、Close をクリックします。		Fc=3	5/7/2008	353.2	antibody	C:(Bia Users)(100Manuai(CSK)(immobilization or antibody.blr
ミンサーナッフを取り出して保存する場合は、センサーナッフカバーに id を書き込むと、	2ンサーチップを取り出して保存する場合は、センサーチップカバーに id を書き込む	Fc=3 Fc=4				Close

補足 1-7. センサーチップの種類		
各センサーチップの詳細は、弊社総合カタログ等を	参照して	ください。
カルボキシル基タイプ(タンパク質、ペプチド、化	合物など	の固定化)
Series S Sensor Chip CM5	3枚	BR-1005-30
Series S Sensor Chip CM4	3枚	BR-1005-34
Series S Sensor Chip CM3	3枚	BR-1005-36
Series S Sensor Chip C1	3枚	BR-1005-35
Series S Sensor Chip CM7	1枚	28-9538-28
ストレプトアビジンタイプ(ビオチン標識の DNA や	^ゥ ペプチト	「などの固定化)
Series S Sensor Chip SA	3枚	BR-1005-31
Biotin CAPture Kit, Series S	1箱	28-9202-34
疎水基タイプ(リン脂質、糖脂質、膜タンパク質な	どの固定	2化)
Series S Sensor Chip HPA	3枚	BR-1005-33
Series S Sensor Chip L1	3枚	BR-1005-38
金属キレートタイプ(His-tag タンパク質の固定化)		
Series S Sensor Chip NTA	3枚	BR-1005-32

1-2-2. ランニング緩衝液による平衡化

Menu bar の Tools \rightarrow Prime を選択します。

Tools	Help
F	rime
S	hutdown
В	iacore T100 Evaluation Software

 \downarrow

ランニング緩衝液および廃液ボトルを確認後、Start をクリックします。

 \downarrow

Prime がスタートします。

Prime	
Priming, plea	se wait.
	Time left: 00:06:46
	\downarrow
Prime	
The Prime pr	ocedure is completed.
	< Back Next > Close

終了後、Close をクリックしてください。 自動的に Standby flow 状態になります。

補足 1-8. 実験途中でのランニング緩衝液の交換

Prime は、ポンプやマイクロ流路系、オートサンプラーなどをランニング緩衝液で洗浄・置 換する操作です。実験途中でランニング緩衝液を変更する場合も、必ず実行してください。

1-2-3. 温度設定

測定温度(Analysis temperature)およびサンプルコンパートメントの温度をそれぞれ設定します。

Menu bar の Tools \rightarrow Set Temperature...を選択します。

Tools	Help								
	Prime								
	Shutdown								
	Biacore T100 Evaluation Software	e							
Standby									
	Stop Standby								
	Eject Rack								
~	Rack Illumination								
	Insert Chip								
	Eject Chip								
	Set Temperature								
	Preferences								
	More Tools								
	\downarrow								
t Ten	nperature								
nalysis	temperature:	25	(° C)						
amnle	compartment temperature:	25	l e ci						

4~45℃の範囲で設定して、**OK**をクリックします。

(サンプルコンパートメントの温度は室温±15℃以内)

<u>H</u>elp

補足 1-9. 設定温度と実際の温度

測定は設定温度で安定した後に実施してください。

設定温度に達していない場合は、画面上の Status bar 中の温度表示が赤の点滅、本体インジ ケーターの temperature ランプが橙色に点滅します。設定温度で安定した場合には、画面上 の温度の表示が黒、インジケーターの temperature ランプは点灯に変わります。 温度が完全に安定するには、ある程度時間を要します。測定温度が室温(25℃)と大きく 異なる場合は、測定を始める前にあらかじめ設定してください。

OK.

Cancel

1-2-4. 試料のセットと取り出し

すべての試料はラックトレイにセットし、システム内に挿入します。サンプルコンパート メント内に入っているラックトレイを取り出すには、Toolbar の **Eject Rack** アイコン () をクリックします。速やかにシステム本体前面のラックトレイポートが開き、ラックトレ イが出てきます。

ラックトレイの下に配置した円形のボタンを押すとロックが解除して、ラックトレイを引 き出すことが出来ます。

Eject Rack Tray	×
Rack Tray Ejected Click OK to return the rack tray compartment.	to the sample
<u>H</u> elp	ОК
Time to auto close: 50	

同時に、画面上に **Eject Rack Tray** ダイアログが表示されます。 ラックトレイポートは **60 秒**で自動的に閉まります。 すぐに閉めたい場合は **OK** をクリックしてください。

日本語取扱説明書

補足 1-12. バイアル位置の指定方法 バイアル位置は、ラックトレイ上の座標で指定します。ラックトレイ前面に刻印されてい る各列"ABC…"の手前から"123…"とカウントします。(例. 左手一番手前は、"A1"。その奥 は、"A2"。)

14 2. 基本操作

2. 基本操作

測定モードには、以下の 3 つのモードがあります。測定モードを起動する際には、Toolbar の各アイコンをクリックします。

T200	Bia	acore T2	200 C	ontrol	Software	
ł	File	View	Run	Tools	Help	•••••
-	D			¥ K	く事	

🗠 Manual run

画面上のアイコンを使い、測定を行いながら操作するマニュアルモードです。 簡単な試験など、数回の添加で完了する試験を行う場合に有効です。 ただし、測定結果は解析できません。

Application wizards

ガイダンスに従いながら、実験条件を入力して実行させるオートモードです。 リガンド分子の固定化や濃度定量、相互作用解析、サーモダイナミクスなどの実 験ごとの専用ウィザードや、pH スカウティングなど実験条件の検討を目的とした ウィザードなどの実験項目について対応しています。

🖶 Methods

複雑な条件設定や特殊な設定が可能な、汎用性が高いオートモードです。 メソッドビルダー機能によりメソッドを作成します。

ここでは、Manual run について説明します。

2-1. マニュアル測定の実行方法

Toolbar の Start Manual run アイコン (\Bbbk) または Menu bar の Run → Manual run をク リックします。

T.

	\downarrow			
🔚 Manual Run				X
Flow			Reagent Rack 2	~
Elow rate: 🛐 (μl/min)			30000000000000000000000000000000000000	
Flow path				
Detection in flow cell(s): 1,2,3,4		<u>R</u> eference subtraction:		ğ (
O 📄 Flow path 1 🛛 📄	Flow path 1-2	none 💌		
O 📑 Flow path 2 🛛 들	Flow path 3-4	none 💌	36 Well Micropiate	
🔿 喜 Flow path 3 🛛 💿 📑	Flow path 1-2-3-4	2-1,4-3 💌	12000000	
O 📃 Flow path 4				
· · · ·			*000000	ŏŏ
			7000000	ŏŏ
			•000000	00
			*000000	
			3000000	XX I
			2000000	ŏŏ
			' <u>२</u> २००२'	° P P
Help Eject Rack			<u>Start</u>	<u>C</u> lose

流速(Flow rate)を入力します。流速は、1~100 µl/min で設定可能です。
 検出モード(Flow path)、Rackの種類を選択します。ラックがセットされていない場合、
 Start をクリックしてもエラーメッセージが表示され先に進めません。測定開始後にサンプルをセットする場合でも、ラックを挿入してください。
 Start をクリックします。

補足 2-1. 試料必要量

試料必要量は、流速(μl/min)と添加時間(s)から計算される試料添加量(μl)に、流路の 共洗い分 28 μlを加算した量が必要です。平底のバイアルを使用する場合、特殊な添加モー ドを使用する場合は、必要試料量が異なります。測定開始後にサンプルをセットできるの で、添加ダイアログに表示される必要試料量を確認後、試料を調製してセットすると間違 いがありません。

Save Results Fr	rom Run As					? 🛛
Save in:	😂 T100manual		~	6	t 📂 🛄	-
My Recent Documents						
Desktop						
() My Documents						
y My Computer						
	File name:	manual			~	Save
My Network	Save as type:	Result file (*.blr)			*	Cancel

ファイルの保存先を指定します。C: \Bia Users\(自分のフォルダ)に移動後、ファイル 名を入力して Save をクリックします。

 \downarrow

センサーグラムが表示され、測定が開始します。

	Biacore T200 Control Softwar	e8 -	[manu	ial, bli	r]													
	File Edit View Command	ls	Run	Tools	Help													- 8 ×
	1 🕞 🗟 🖙 🛄 🗲 🖻 🔨	1		Cycle:	1	-	Curve:	— Sens	orgram I	Fc=1			•	<u>@</u> ∙				
(준 표 ♪ ♪ 및 ② <u>■</u> . [○ ♪ └_ Ⅱ ▶[○ New Cycle 30 1) F	35940 -	[.ock scale
			35930 -															
			35920 -															
		esponse	35910 -	-														
		ľ	35890 -															
			35880 -	-														
			35870 - C)	•	5	10		15		20 Ti	25 me	30		35	40	45	 50 s
		F	c Time	e Win	ndow	AbsResp	SD I	LRSD	Slope	RelResp	Baseline	ld			Кеу	words in cycle 1	Value	
															International Processing			
	Flow: 30 Flow Path: 1																	
	Online - COM1 Temp	erat	ure: 25.0	00 °C		Running	g manual i	run										
	Sample compartment temperature - curre	ent:	25 °⊂ s	et: 25 9	°C	Runtim	ne: 1 min											:

2-1-1. 試料の添加

Inject command アイコン () 赤色) または Menu bar の **Commands** \rightarrow **Inject...**を選択 します。

Inject			
Vial/well position:	R1 A1	₽	ОК
<u>C</u> ontact time:	60	(s)	Cancel
			<u>H</u> elp
Minimum required v	volume in vi	al/well for this in	jection 58 (µl)

試料の位置(Vial/well position)を設定します。この時、試料の位置入力ボックス右のアイ コンをクリックすると、ラックの図上で選択できます。

添加時間(contact time)を入力します。位置と添加時間を設定すると、Inject ダイアログの右下に必要量が表示されます。

試料をラックにセットする場合は、一旦、Cancel をクリックし、Inject ダイアログを解除 してください。

Eject rack tray アイコン(**」**)または Menu bar の Commands→Eject Rack を選択します。

Eject Rack Tray	×
Rack Tray Ejected Click OK to return the rack tray to the sample compartment.	
<u>Н</u> еlp ОК	
Time to auto close: 50	

ラックトレイを取り出し、適切な量の試料を分注したバイアルをセットします。ラックトレイを再びシステム本体にセットし **OK** をクリックします。

T

Inject	•	
Vial/well <u>p</u> osition:	R2 B1	ОК
<u>C</u> ontact time:	60 (s)	Cancel
		<u>H</u> elp
Minimum required v	volume in vial/well for I	this injection: 58 (μl)

Inject command アイコンを選択し、試料位置および添加時間を入力します。 OK をクリックします。

必要に応じて引き続き試料を添加します。

2-1-2. レポートポイントの追加

レポートポイントとは、センサーグラムの任意の時間におけるレスポンス(RU)を記録したものです。レポートポイントは、レポートポイントテーブルに表示されます。試料が添加されると、その都度、自動的にレポートポイントが取得されます。自動取得したレポートポイント以外にも、任意の時間に幾つも追加することが可能です。

Toolbar の **Reference line** アイコン (+) または Menu bar の **View** \rightarrow **Reference Line** を クリックして、センサーグラム上にリファレンスラインを表示します。

 $[\]downarrow$

マウスのカーソル(矢印)をリファレンスラインの縦線に合わせ、任意の時間までドラッ グします。または、任意の時間上のセンサーグラムをクリックし、リファレンスラインを 移動させます。

Toolbar \mathcal{O} Add Report point $\mathcal{P}(\mathbb{P})$ state Menu bar \mathcal{O} Edit \rightarrow Report point $\mathcal{E}(\mathbb{P})$ state Menu bar \mathcal{O} Edit \rightarrow Report point $\mathcal{E}(\mathbb{P})$

l

Add Report Point 🛛 🛛 🔀
Report Point
Id:
<u>T</u> ime: 258.0 (s)
<u>₩</u> indow 5 (s)
✓ Baseline
✓ Add to all curves in this cycle
Help <u>OK</u> Cancel

Id にコメントを入力します。相対値 0 (ベースライン) として設定する場合は Baseline を チェックします。OK をクリックすると、レポートポイントが追加されます。

2-1-3. 測定の終了

試料添加終了後、End Manual run アイコン (\sqsubseteq) または Menu bar の Commands → End Run をクリックします。装置は自動的に Standby flow 状態になります。

2-2. ファイルの保存

得られたセンサーグラムは、測定終了時に自動保存されます。 追加したレポートポイントを保存するには、Menu bar の File → Save をクリックします。

2-3. データの印刷

File \rightarrow Print...をクリックします。印刷したい項目にチェックを入れ、OK をクリックしま す。

Print	
Printer Printer: Microsoft XPS Do	cument Writer
 ✓ File Properties ○ Wizard Template ○ Wizard Results 	Sensorgram None Qurrent Cycle Range: All cycles Include event log for cycles
	OK Cancel
File Properties	ファイルプロパティ
Wizard Template または Method	測定内容
Wizard Results または Sensorgram	測定結果
	Current Cycle・・・表示されているセンサーグ ラム Range・・・複数サイクル存在する場合の必要 な部分のセンサーグラム All cycles・・・すべてのセンサーグラムの印刷
Include event log for cycles	イベントログ

3. 固定化

リガンド

相互作用を検討する分子のうち、固定化する分子を**リガンド**と言います。リガンドの精製 度は、結合特異性の判定やアナライトの結合許容量に大きく影響します。直接固定化を行 う場合には、90%以上の精製度のリガンドを使用してください。

各種固定化方法

センサーチップ CM5 に、化学結合で固定化する代表的な方法を記載します。詳細およびそ の他の固定化方法については、"生体分子相互作用解析 攻略ガイド"を参照してください。

アミンカップリング法

リガンド表面に存在するアミノ基 (N 末端アミノ基またはリジン ε-アミノ基) を利 用して固定化する方法です。CM (カルボキシメチル) デキストランのカルボキシ ル基を NHS (N-ヒドロキシスクシンイミド) で活性化し、リガンドを固定化しま す。固定化後、残った活性 NHS 基をエタノールアミンでブロッキングします。

リガンドチオールカップリング法

リガンドの表面に存在する遊離型チオール基を用いて、-**S-S**-結合で固定化する方 法です。

サーフェスチオールカップリング法

センサー表面にチオール基を導入し、リガンドのカルボキシル基を介して-S-S-結 合で固定化する方法です。

アルデヒドカップリング法

大量の糖鎖を持つムチンタンパク質等の糖を利用して固定化をする方法です。糖 鎖の非還元末端をメタ過ヨウ素酸により開裂させ、アルデヒド基を作成して、ヒ ドラジンにより、ヒドラジノ基を導入したセンサーチップにシッフ塩基で固定化 します。

固定化量

実験の目的によって調節する必要があります。

特異的結合の有無の判定、スクリーニング

アナライトの結合レスポンスが十分得られる固定化量が必要となります。固定化量の下限として、理論的最大結合量 Rmax(固定化したリガンドにアナライトが最大量結合したときのレスポンス)が、最低でも 20 RU は必要です。理論的な最大結合量は、以下の式で算出できます。

アナラ・	アナライトの最大結合レスポンス(理論的最大結合量 R _{max})							
	=アナライトの分子量 x	リガンドの固定化量	륕/リガンドの分子量 xS					
	(D a)	(RU)	(D a)					
		S はリガンドのア	ナライト結合部位数					
(例)	リガンドの分子量	50,000 Da						
	リガンド固定化量	1,000 RU						
	リガンド結合部位数	1						
	アナライト分子量	20,000 Da						
	理論的最大結合量(R _{max}) = 20,000 x 1,000 / 5	0,000 x 1 = 400 RU					

濃度測定

固定化量はできるだけ多くします。目安として、タンパク質リガンドの場合、10,000 RU以上固定化します。固定化量を多くすると、既知濃度アナライト測定時に得られる結合レスポンス RU vs C(濃度)をプロットした検量線の直線性が高くなります。

反応速度定数(*k_a*,*k_d*)、解離定数(K_D)の算出

固定化量はできるだけ抑えます。マストランスポートリミテーション(固定化量 が多いことにより、アナライトの供給が追いつかない現象)を抑制するためです。 至適固定化量は、以下の式から算出される最大と最小の固定化量(RU)の範囲と なります。

最小固定化量 (RU) 40 x 1/S x (リガンドの分子量/アナライトの分子量)

最大固定化量(RU)

200 x 1/S x (リガンドの分子量/アナライトの分子量)

s はリガンドのアナライト結合部位数

(例) リガンドの分子量 50 kDa

アナライトの分子量	100 kDa
リガンド結合価数	1
最小固定化量	40 x 1/1 x (50,000/100,000) = 20 RU
最大固定化量	200 x 1/1 x (50,000/100,000) = 100 RU
至適固定化量範囲	20~100 RU

3-1. アミンカップリング法

リガンド表面に存在するアミノ基 (N 末端アミノ基またはリジン ε-アミノ基)を利用して固 定化します。CM デキストランのカルボキシル基を NHS (N-ヒドロキシスクシンイミド)で 活性化し、至適な緩衝液で希釈したリガンドを添加して固定化します。残った活性 NHS 基 をエタノールアミンでブロッキングします。

準備するもの

アミンカップリングキット(BR-1000-50)

アミンカップリングキットには、以下の試薬が含まれています。

- EDC (N-ethyl-N'- (3-dimethylaminopropyl) carbodiimide hydrochloride)
- NHS (N-hydroxysuccinimide)

1 M ethanolamine hydrochloride 溶液 (pH 8.5)

キットに添付されている説明書に従い、EDC および NHS はそれぞれ 10 ml の超純 水に溶解し、400 mM EDC、100 mM NHS を調製します。ただちに 200 µl ずつを 7 mm プラスチックバイアルにそれぞれ分注し、ラバーキャップをして使用直前まで -20 ℃で冷凍保存してください。(使用期限:2 か月)使用直前に 1 組ずつの試薬 を取り出して、融解して使用します。融解後、試薬の再凍結はできません。エタ ノールアミンは、溶液で供給されるので冷蔵(4℃)保存します。200 µl ずつ小分 けしておくか、使用する直前に分注します。 26 3. 固定化

ランニング緩衝液

1級アミンを含まない緩衝液を準備してください。

(トリスやグリシン緩衝液は、1級アミンの緩衝液です。)

リガンド

アジ化ナトリウムなどの求核性物質を含まないものを準備してください。リガンドの安定化目的のために添加されている BSA (ウシ血清アルブミン)、ゼラチンなどのタンパク質類は、あらかじめ除去するか含まれないものを準備してください。

リガンド希釈液

10 mM 酢酸緩衝液、10 mM HEPES 緩衝液、10 mM Borate/1 M NaCl 緩衝液(pH 8.5)

リガンドの調製

リガンドがタンパク質の場合

リガンドの等電点より 0.5~2 低い pH の緩衝液を用いて、終濃度 5~200 μg/ml 程 度になるよう、リガンドを希釈します。等電点が中性付近であれば、希釈用緩衝 液として、10 mM 酢酸ナトリウム緩衝液 (pH 4.0 ~ 5.5)を用います。pH 3.5 以下 のものは使用しないでください。等電点が塩基性であれば、希釈用緩衝液として、 10 mM HEPES 緩衝液 (pH 6.0 ~ 8.0)を用います。

等電点が不明な場合も既知の場合も、固定化前に、あらかじめ、27 ページに示し たウィザードの Immobilization pH Scouting により至適なリガンド希釈液の pH を検 討します。

濃縮効果が確認できない酸性タンパク質の場合は、サーフェスチオールカップリ ングもしくはリガンドをビオチン化後、センサーチップ SA に固定化する方法を検 討します。

リガンドがペプチドや低分子物質の場合

100 μg/ml 以上の高濃度のリガンドを使用し、弱アルカリ性条件 10 mM Borate/1 M NaCl 緩衝液(pH 8.5)で希釈します。活性型 NHS 基とアミノ基との反応効率が、 pH 8.5 前後でもっとも高いためです。

溶解性が低い低分子化合物を固定化する際には、DMSO などの有機溶媒存在下で固定化を実施します。有機溶媒を利用する際には、化学耐性を英語版マニュアル (Instrument handbook) で確認してください。

3-1-1. リガンド希釈液の pH 選択

センサーチップ CM5 表面にコーティングされている直鎖デキストランにはカルボキシル基 が導入されているため、表面は負に荷電しています。リガンドを正に荷電した状態で添加 すると、負に荷電している CM デキストランとの間に静電気的な結合が生じ、リガンドを CM デキストラン中に濃縮させることができます。この濃縮効果のことを、プレコンセント レーション効果といいます。この条件を用いることで低濃度のリガンドをセンサーチップ 表面に高濃度で供給でき、効率よく固定化することができます。

等電点が既知のリガンドの場合

等電点よりも 0.5 以上低い pH を使用する。ただし、等電点が既知の場合であって も、高次構造の状態などにより、濃縮される pH が予想外に異なることもあるため、 固定化前に、ウィザードの Immobilization pH Scouting により確認することをお 奨めします。

等電点が不明な場合

ウィザードの Immobilization pH Scouting を実行し、希釈液の pH を検討します。 この操作は、何も処理していないフローセル(固定化実施予定のセル)を使用し て、各 pH におけるセンサー表面へのリガンドの濃縮度合いを評価します。この検 討で、リガンドは固定化されません。検討後、引き続き、そのセルにリガンドを 固定化してください。

リガンド添加終了後、ランニング緩衝液に置換されると、通常は静電的に結合し たリガンドはセンサーチップ表面から速やかに解離します。しかし、まれにリガ ンドがデキストランに非特異的吸着を起こすため、Immobilization pH Scouting で は、リガンド添加終了後、洗浄溶液(50 mM NaOH)を添加し、吸着したリガンド を洗浄する操作が組み込まれています。 ます。

Open/New Wizard Template]			
Immobilization pH Scouting Immobilization Assay Development Regeneration Scouting	Name		Туре	
Buffer Scouting Surface Performance Control Experiments Kinetics - Linked Reactions				
Assay				
Concentration Analysis Concentration Analysis				
Immunogenicity Screening Immunogenicity Screening Immunogenicity Confirmation Immunogenicity Isotyping				
	<			
Help Browse		<u>N</u> ew	Open	Cancel

Toolbar \mathcal{O} Run Wizard $\mathcal{P}(\neg \mathcal{V})$ state Menu bar \mathcal{O} Run \rightarrow Wizard... \mathcal{E}

Surface Preparation \rightarrow Immobilization pH Scouting を選択し、New...をクリックします。 以前にプログラムを Methods and Templates フォルダに保存している場合は、右側の一覧 表に反映されます。同じプログラムを実行したい場合は、Open...をクリックします。別の フォルダに保存されているプログラムを実行したい場合は、Browse...をクリックし、目的 のプログラムをハイライトにして Open...をクリックします。

	\downarrow	
🌆 lmn	nobilization pH Scouting - Setup	×
Elow	stion y path: 4	
Butte	ns Buffer Name pH	
1	10 mM Acetate 5.5	
2	10 mM Acetate 5	
3	10 mM Acetate 4.5	
4	10 mM Acetate 4	
5		
Ш	elp < <u>B</u> ack <u>N</u> ext > <u>C</u> lose	

Flow path を選択します。固定化予定セルを選択し(偶数セルを選択)、リガンド希釈液を 入力します。(デフォルトの変更も可能です。) Next > をクリックします。

	\downarrow
🌆 Immobilizat	tion pH Scouting - Injection Parameters 🔀
Ligand	
Solution:	ProteinA 10ug/ml
C <u>o</u> ntact time:	60 (s) <u>F</u> low rate: 10 (μl/min)
Surface regene	ration
This surface w	ash will be run once at the end of each cycle.
Solution:	50mM NaOH
<u>H</u> elp	< <u>B</u> ack <u>N</u> ext > <u>C</u> lose

L	ig	la	n	d
		,		-

Solution	リガンドの名称	
contact time	添加時間(s)	通常は 60 s に変更
Flow rate	流速(µl/min)	10µl/min
Surface regeneration		
Solution	リガンド添加終了後	のチップ表面の洗浄溶液
	(50 mM NaOH)	

各項目に情報を入力後、Next >をクリックします。

Immobilization pH Scouting -	System Preparations	×
Prime before run Nor <u>m</u> alize detector		
Temperature settings Analysis temperature: Sample compartment temperature:	25 (°C) 25 (°C)	
Help Cycle Run List	< <u>B</u> ack <u>N</u> ext > <u>C</u> lose	

 \downarrow

固定化操作を始める前に、Prime および Normalize の設定が可能です。

Temperature settings

Analysis temperature	25°C
Sample compartment temperature	25°C
入力後、Next>をクリックします。	

📠 Immobilization pH Scoutin	g - Rack Pos	itions				
Sample and Reagent Rack 1	~	Position	Volume (µl)	Content	Туре	Sample 1 Buffer_name
		R1 A1	38	ProteinA 10ug/ml	Sample	10 mM Acetate 5.5
		R1 A2	38	ProteinA 10ug/ml	Sample	10 mM Acetate 5
10 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc		R1 A3	38	ProteinA 10ug/ml	Sample	10 mM Acetate 4.5
	8) F	R1 A4	38	ProteinA 10ug/ml	Sample	10 mM Acetate 4
		R1 B1	198	50mM NaOH	Regeneration	
$12 \bigcirc \bigcirc$	$\dot{\frown}$					
)7()					
°OOO,						
000000	′s()					
	\rangle					
500400						
* • • • • • • • • •	[′] ²()					
$^{2} \bigcirc \bigcirc \bigcirc ^{2} \bigcirc \bigcirc \bigcirc$	\rangle					
	Eject Rack				< <u>B</u> ack	Next > Close

右側の表で試薬の位置と必要量(µl)を確認します。表をクリックすると、対応する左側の ラック上のバイアル位置が強調表示になります。位置と必要量(µl)を確認しながら、調製 したリガンド、試薬バイアルをラックにセットします。

 \downarrow

Eject Rack をクリックして、**Rack tray port** を開きます。

\downarrow	
Eject Rack Tray	
Rack Tray Ejected Click OK to return the rack compartment.	tray to the sample
	ОК
Time to auto close: 50	

ラックトレイを奥まで挿入し、**OK**をクリックします。

Eject Rack Tray ダイアログが閉じた後、**Rack Positions** ダイアログ右下の **Next >**をクリックします。

🖩 Immobilization pH Scouting - Prepare Run Protocol 📃 🔲 🔀
Fahoma • 10 • B I U
 Prepare Run Protocol Make sure the correct sensor chip is docked. Make sure all samples & reagents are loaded in the rack and microplate according to the Rack Positions setup. (Vials should be sealed with rubber caps and microplate with adhesive foil.) Place the buffer(s) on the left hand tray and insert the correct tubing(s), see below. Notel Standby after run will use buffer A. Make sure there is fresh water in the water bottle on the right hand tray. If necessary, empty the waste bottle before start of the run.
Estimated run time: 18 min (excluding conditional statements, temperature changes and standby flow) Estimated buffer consumption: Running buffer At least 100 ml plus 65 ml/day for standby after run
<u>H</u> elp <u>M</u> enu ▼ < <u>B</u> ack <u>Start</u> <u>C</u> lose

基本的な注意事項、測定時間、必要なランニング緩衝液の量が表示されます。 Start をクリックします。

 \downarrow

設定したウィザードをテンプレートとして保存するかどうか、メッセージが表示されます。 保存の場合は、Save as で Methods and Templates フォルダまたは Bia Users の各自のフォ ルダに保存します。保存しない場合は、Don't Save を選択します。

		\downarrow			
Save Results Fr	om Run As				? 🔀
Save in:	🚞 T100manual		~ G) 🦻 📂 🛄-	
My Recent Documents	i manual.blr				
My Documents					
My Computer					
	File name:	pHscouting		*	Save
My Network	Save as type:	Result file (*.blr)		~	Cancel

Save in:に測定結果の保存先を設定し、File name にファイル名を入力して、Save をクリックすると、測定が開始します。

Immobilization pH Scouting 終了後、装置は **Standby flow** 状態になります。Biacore T200 Evaluation Software が自動的に起動して、各 pH の測定結果が重ね書き表示されます。(Control Software 上の測定データは、入力したファイル名で自動保存されています。)

ます。

3-1-2. 基本プロトコールでの固定化

Toolbar \mathcal{O} Run Wizard $\mathcal{P}(\neg \mathcal{V})$ at the Menu bar \mathcal{O} Run \rightarrow Wizard... \mathcal{E}

Open/New Wizard Template					
Surface Preparation	Look in:	Methods A	nd Templates		💌 🖻 🖻
Immobilization	Name			Туре	
Regeneration Scouting					
Surface Performance					
Kinetics - Linked Reactions					
Assay					
Kinetics/Affinity Binding Analysis					
Concentration Analysis					
Immunogenicity					
Immunogenicity Screening					
Immunogenicity Isotyping					
					2
Help Browse			<u>N</u> ew	Open	Cancel

Surface Preparation \rightarrow Immobilization を選択した後、New...をクリックします。以前にプログラムを Methods and Templates フォルダに保存している場合は、右側の一覧表に反映 されます。同じプログラムを実行したい場合は、Open...をクリックします。別のフォルダ に保存されているプログラムを実行したい場合は、Browse...をクリックし、目的のプログラムをハイライトにして Open...をクリックします。

↓

Immobilization immobilization :	Setup	>
Chip type: CM5	· ·	
Flow cells per cycle: 1		
Flow cell 1		
Immobilize flow cell <u>1</u>	Method: Method	
 Aim for immobilized level 	Ligand: Dilute ligand	
Specify contact time and flow rate	Contact time: 420 (s) Flow rate: 10 (µl/min)	
 Blank immobilization 		
Flow cell 2		
Immobilize flow cell 2	Method: 🔤 Amine	
 Aim for immobilized level 	Ligand: Dilute ligand	
Specify contact time and flow rate	Contact time: 420 (s) Flow rate: 10 (µl/min)	
 Blank immobilization 		
Flow cell 3		
Immobilize flow cell 3	Method: 🔤 Amine	
 Aim for immobilized level 	Ligand: Dilute ligand	
Specify contact time and flow rate	Contact time: 420 (s) Flow rate: 10 (µl/min)	
 Blank immobilization 		
Flow cell 4		
Immobilize flow cell 4	Method: 🔤 Amine	
 Aim for immobilized level 	Ligand: Dilute ligand	
Specify contact time and flow rate	Contact time: 420 (s) Flow rate: 10 (µl/min)	
 Blank immobilization 		
Help Custom Methods	< <u>Back</u> <u>N</u> ext> <u>C</u> lose	

Chip type のプルダウンメニューで、使用するセンサーチップ(CM5)を選択します。 Flow cells per cycle で、一度に固定化するセルの数を選択します。通常、1 を選択します。 キャプチャー法を使用する場合で、キャプチャー分子を複数セルに固定化する場合には、2 または4を選択します。

Flow cell 4	
Immobilize flow cell <u>4</u>	Method: The Amine
 Aim for immobilized level 	Ligand: ProtreinA 20ug/ml, pH5 Dilute ligand
 Specify contact time and flow rate 	Contact time: 420 (s) Flow rate: 10 (µl/min)
 Blank immobilization 	

固定化する Flow cell にチェックを入れます。固定化は、偶数セルを選択するのが望ましい です。(通常、リファレンスセルとして Fc1 または Fc3 を使用します。)

Method固定化方法を選択します。(ここでは Amine を選択します。)Ligandリガンドの名称を入力します。

標準プロトコールでは、NHS 活性化とブロッキングは流速 10 µl/min、添加 7 分間と固定されています。リガンドの添加条件については、以下の項目から選択します。

Aim for immobilized level

リガンドの固定化量を調節して固定化できます。

Specify contact time and flow rate

リガンドの添加時間と流速を指定して固定化できます。

Blank Immobilization

リガンドは添加しません。NHS 活性化後エタノールアミンでブロッキン グしたリファレンスセルを作成できます。

ここでは、Specify contact time and flow rate を選択し、標準的な条件、添加時間 420 (s)、流 速 10 (µl/min)を入力します。Next >をクリックします。

 \downarrow

補足 3-2. 標準プロトコールの変更

Specify contact time and flow rate は、活性化時間およびブロッキング時間は7分間と指定されています。固定化量を多くする目的で、添加時間を長くしたいなど、既存のメソッドを変更する場合は、画面左下の Custom Methods...をクリックします。

画面上部に既存のメソッドが表示されている。Amine をクリックし、ハイライトにします。

36 3. 固定化

画面右上の Copy	をクリックします。			
Methods: Copy of Ar Too Aldehy Too Amine Too Ligand Too Surfac	mine ode I thiol nide e thiol			
Methods:に、コ	ピーしたメソッドが追加	加されます。 ↓		
Method name: Copy of	Amine			
Command PRE-CONC MIXINJECT WASH	Solution Specified in Immobilization Setup EDC + NHS (50:50) Ethanolamine	Contact Time (s) Flow 420	w Rate (µl/min) 10	Pre-conc 🌮
INJECT	Ethanolamine	420	10	<u>W</u> ash
ノルクリックする (例)E 必要に応じて流送	5 か、またはクリックし EDC/NHS の項目 Mix ft Inject Solution: EDC Mix with: NHS Fragtion: 50 (% Contact time: 500 (s) Elow rate: 10 (µ) 東および添加時間を変更	レ (Editをクリ ↓) of mix with solution /min) 巨後、OK をクリ、 ↓	ツクします。 ICancel 世elp ソクします。	
Method name: Copy of	f Amine			
Command PRE-CONC MIXINJECT WASH LIGANDINJECT INJECT	Solution Specified in Immobilization Setup EDC + NHS (50:50) Ethanolamine Specified in Immobilization Setup Ethanolamine	Contact Time (s) Flor 500 420	w Rate (µl/min) 10 10	Pre-conc 🌮 Inject 🏈 Mix & Inject 🍑 Wash
変更後、右下の	OK をクリックします。			

📠 Immobilization - System Prepa	rations 🛛 🔀
Prime before run Normalize detector	
✓ Temperature settings Analysis temperature: Sample compartment temperature:	25 (°C) 25 (°C)
Help	< <u>₿</u> ack <u>N</u> ext > <u>C</u> lose

固定化操作を始める前に、Prime および Normalize の設定が可能です。

Temperature settings

Analysis temperature	25°C
Sample compartment temperature	25°C

Next >をクリックします。

右側の表で試薬の位置と必要量(µI)を確認します。表をクリックすると対応する左側のラ ック上のバイアル位置が強調表示になります。位置と必要量を確認しながらバイアルをラ ックにセットします。

EDC	89 μl/ 7 mm プラスチックバイアル
NHS	89 μl/ 7 mm プラスチックバイアル
空(NHS/EDC 混合用)	空 / 7 mm プラスチックバイアル
Ethanolamine	129 μl/ 7 mm プラスチックバイアル
Ligand	98 μl/ 7 mm プラスチックバイアル
固定化時間・流速を変更し	た場合には必要量が変わります。
	\downarrow

Eject Rack をクリックして、**Rack tray port** を開きます。

ラックトレイを奥まで挿入して、OK をクリックします。Eject Rack Tray ダイアログが閉じた後、Rack Positions ダイアログ右下の Next >をクリックします。

Ţ

Ţ

🌆 Immobilization pH	Scouting	g - Prep	are Rur	Protocol			
Tahoma	• 10	- B	ΙU				
 Prepare Run Prot Make sure the corre Make sure all samp Positions setup. (Vi Place the buffer(s) c Note! Standby after Make sure there is t If necessary, empty 	ocol ct senso les & rea als shoul als shoul n the left run will u resh wat the wast	r chip is gents au d be se hand tr se buffe er in the te bottle	dockec aled with ay and i r A. water b before s	l d in the rack and n rubber caps and nsert the correct attle on the right start of the run.	microplate a I microplate tubing(s), se hand tray.	according to th with adhesive se below.	e Rack foil.)
Estimated run time: 18 mi Estimated buffer consump A Running buffer At least 100 ml plus 65 ml/day fo standby after run	n (excludir tion: pr	n g conditio Not in use	onal stater	nents, temperature cl	nanges and sta	andby flow)	
Help Men	. -				< <u>B</u> ack	<u>S</u> tart	Close

基本的な注意事項、固定化時間、必要なランニング緩衝液量が表示されます。 Start をクリックします。

 \downarrow

設定したウィザードをテンプレートとして保存するかどうか、メッセージが表示されます。 保存の場合は、Save as で Methods and Templates フォルダまたは Bia Users の各自のフォ ルダに保存します。保存しない場合は、Don't Save を選択します。

 \downarrow

Save in:に測定結果の保存先を設定し、File name にファイル名を入力して、Save すると測

定がスタートします。

固定化終了後、装置は Standby flow 状態になります。測定データは、入力したファイル名 で自動的に保存されます。

Ţ

補足 3-3. 緊急停止

測定開始後、プログラムを緊急停止したい場合には、<u>キーボードの[Ctrl]キーと[Break]キー</u> を同時に押してください。

固定化量(RU)が別途表示されます。

40 3. 固定化

1	🖥 Immobiliz	zation Results					
	Chip: CM5						
	Flow cell	Procedure	Method	Ligand	Response Bound (RU)	Response Final (RU)	
	4	Time and flow	Amine	ProtreinA 20ug/ml, pH5	1383.8	1513.9	
	<u>H</u> elp	<u>Print</u>					

補足 3-4. 固定化量の確認

固定化量として Response Bound と Response Final の 2 種類が表示されます。

Bound リガンド添加前後のセンサーグラムの高さの差

Final NHS/EDC 添加前からエタノールアミン添加終了後の差

リガンドがアグリゲーションしている場合やセンサーチップ表面に吸着する場合は、エタ ノールアミンを添加することにより、非共有結合でセンサーチップ表面に残ったリガンド は洗い流されるため、Final のレスポンスは Bound より小さくなります。また、固定化量が 少ない場合は、NHS 化した部分の大半に(一部はリガンドが導入されている)エタノール アミンが導入されるため、Final のレスポンスは Bound より大きくなることがあります。い ずれの場合も、レスポンスが小さい方を固定化量として採用してください。

3-1-3. 固定化量を調節して固定化

反応速度定数の算出を目的とした実験の場合、固定化量を少なく調節する必要があります。 この場合、リガンドの添加方法として Aim for Immobilized level を使用すると便利です。 固定化量をできるだけ多くしたい場合には、この方法は不向きです。この場合は、リガン ド添加時間を長くして固定化してください。(補足 3-2 参照。)

Toolbar \mathcal{O} Run Wizard $\mathcal{P}(\neg \mathcal{V})$ = t (\mathcal{V}) = t (\mathcal{V}

Surface Preparation \rightarrow Immobilization を選択した後、New...をクリックします。以前にプログラムを Methods and Templates フォルダに保存している場合は、右側の一覧表に反映 されます。同じプログラムを実行したい場合は、Open...をクリックします。別のフォルダ に保存されているプログラムを実行したい場合は、Browse...をクリックし、目的のプログラムをハイライトにして Open...をクリックします。

 \downarrow

	👼 Immobilization - Immobilization Setup
	Chip type: CM5
	Flow cells per cycle: 1
	Flow cell 1
	Immobilize flow cell 1 Method: Amine
	Aim for immobilized level Ligand Dilute ligand Specify contact time and flow rate Contact time: 420 (s) Flow rate: 10 (ul/min)
	Blank immobilization
	- Flow cell 2
	Immobilize flow cell 2 Method: Amine
	Aim for immobilized level Ligand Ligand Junute ligand Junute ligand Junute ligand Junute ligand Junute ligand
	Blank immobilization
	- Flow cell 3
	Immobilize flow cell 3 Method: Method
	A am for immoduled level Ligand Specify contact time and flow rate Contact time (u//min)
	O Blank immobilization
	- Flow cell 4
	Amne
	Specify contact time and flow rate Contact time: 420 (s) Flow rate: 10 (µL/min)
	O Blank immobilization
	Help Custom Methods < <u>Back Next</u>
- 0 - 1 > 1	
Chip type のフルタウ	ンメニューで、使用するセンサーナッフ(CM5)を選択します。
	\downarrow
Flow cell 4	
🛛 🔁 📃 Immobilize flo	w cell <u>4</u> Method: 🔚 Amine 🔽
Air (a invalit	dianat patibodu
 Aim for immobilize 	id level Ligand. antibody
Specify contact t	ime and flow rate Target level: 250 (RU) Wash solution: 50 mM NaOH
🔘 Blank immobilizat	ion
固定化する Flow cell	を選択します。Aim for immobilized level にチェックを入れます。
Method	固定化方法 Amine を選択
Licond	リガンドの夕称
Liyanu	
Target level	目標固定化量(RU)

Wash solution 固定化前のリガンドテスト添加後のチップ表面洗浄液

(50 mM NaOH)

各項目に情報を入力後、Next >をクリックします。

以下測定方法は、37~40ページを参照してください。

Ļ

Immobilization Results ダイアログに固定化量(RU)が表示されます。目標固定化量に到達 したかは、**Target Reached** に表示されます。最終的な固定化量は、前章と同様に値が小さ い Response を採用してください。

補足 3-5. 固定化ウィザードの中断

このウィザードでは NHS 活性化前に、リガンド溶液をテスト添加し、濃縮効果が得られる か、また、その結果から目的の固定化量が調節できる条件であるかを判断します。 リガンド条件に問題がある場合、この時点でプログラムが自動的に終了します。リガンド は固定化されていないので、リガンド溶液を調製し直し、同じフローセルに再度固定化を 試みてください。

Flow cell	Procedure	<u>Method</u>	Ligand	Response	Response	Target Reached
	Target level	Amine	antibody 10ug/ml pH5	Bound (RU)	Final (RO)	No - Preconcentration binding is too fast
Help	Pint					Qose

濃縮効果が強すぎ、添加時間を短くしても目標のレベル以上固定化され ると判断された場合に表示されます。希釈緩衝液の pH を上げるか、リガ ンド濃度を下げる必要があります。

Preconcentration binding is too slow

濃縮効果が不十分または観察されず、添加時間を長くしても目標のレベ ルまで固定化できないと判断された場合に表示されます。希釈緩衝液の pHを下げるか、リガンド濃度を上げる必要があります。

4. マニュアル測定による相互作用の条件検討

マニュアル操作により、アナライトの特異的結合を確認します。必要であれば、引き続き、 再生条件を検討します。再生条件が決まったら、同一濃度のアナライトを添加し、再現性 を確認します。

なお、シングルサイクル法で速度定数・解離定数を算出する場合には、再生条件の検討は 必要ありません。

アナライト

リガンドを固定化したセンサーチップに対して、リガンドとの結合を測定する目的で添加 する分子を指します。血清や培養上清等のクルード(crude)なサンプルを使用できますが、 不溶性の粒子などは遠心などで除去してください。反応速度定数や解離定数算出を目的と した実験の場合は、アナライトの精製度が高く、モル濃度が既知である必要があります。

アナライトの調製

ランニング緩衝液で希釈してください。希釈できない場合は、ゲルろ過などを使用してランニング緩衝液で緩衝液交換するか、ランニング緩衝液自体をアナライト溶解液条件に合わせることが必要となります。緩衝液が異なる場合には、溶液効果(Bulk Effect:ランニング緩衝液と添加溶液(アナライトなど)の密度の差により発生するレスポンスの差)が発生します。反応速度定数や解離定数の算出を目的とした実験においては、結合領域(アナライト溶解液)と解離領域(ランニング緩衝液)が異なる緩衝液組成条件下の測定になり、解析結果に影響を与える可能性があります。

アナライト濃度は結合の強さや分子量にもよりますが、数十 ng/ml~数百 μg/ml で測定します。反応速度定数を算出する場合には、予想される K₂ (解離定数)値 の 1/10~10 倍のモル濃度で解析すると良好な結果が得られます。予備検討時は、 結合が弱いことや再生条件(リガンドに結合したアナライトを溶出し、リガンド 固定化表面を固定化直後の状態に再生する操作)を検討する必要性を考慮し、高 濃度(タンパク質アナライトの場合、数~数+ μg/ml)を用いるのが望ましいです。

リファレンスセル

溶液効果および非特異的吸着を差し引くために、必ずリファレンスセルへもアナライトを 添加してください。リファレンスセルは、未処理のセル、活性化・ブロッキングセル、ネ ガティブコントロール固定化セルなどを利用します。

再生溶液

リガンドに結合したアナライトを強制的に解離させる操作を再生といいます。解離が速い 相互作用では、ランニング緩衝液が流れることで、短時間でアナライトが完全に解離する ため再生の必要がありません。解離速度が遅い相互作用の場合には、適当な塩、酸、アル カリ溶液をアナライト結合表面に 30 秒~1 分間添加し再生します。至適な再生条件(どの 溶液で何分間、何回添加するか)は、分子間ごとに異なるため、その都度検討が必要とな ります。

理想的な再生条件

リガンドの活性が失われない条件

アナライトを完全に解離する条件

リガンドがセンサーチップ表面から遊離しない条件

補足 4-1. 再生溶液の種類

再生溶液は通常以下のようなものが使用されます。検討の際にはマイルドな条件から検討 してください(塩溶液→酸溶液→アルカリ溶液)。添加時間は、1分以内で検討します。

試薬	濃度あるいは pH
NaCl	< 2 M
酸性条件	
10 mM Gly-HCl	> pH 1.5
HCI	< 100 mM
Phosphoric acid	< 100 mM
Formic acid	< 20 %
アルカリ条件	
10 mM Gly-NaOH	< pH 12
NaOH	< 100 mM
Ethanolamine	< 100 mM
Ethanolamine-HCI	< 1 M
キレート剤 多価カチオン依存性反応の場合	
EDTA	< 0.35 M
界面活性剤	
Surfactant P-20 (Tween 20)	< 5 %
Triton X-100	< 5 %
SDS	< 0.5 %
Octylglucoside	< 40 mM
有機溶媒	
Acetonitrile	< 20%
DMSO	< 8%
Ethylene glycol in HBS Buffer	< 50%
Ethanol	< 20%
Formamide	< 40%
Guanidine-HCl	< 5M
Urea	< 8M

Toolbar の Start Manual run アイコン (と,) または Menu bar の Run → Manual run をク リックします。

T

Manual Run Flow Peagent Back 2 Flow path Reference subtraction: Detection in flow cell(s) 3.4 Beference subtraction: Flow path 1 Flow path 1-2 none Flow path 2 Flow path 3.4 Hail 4.3 Flow path 3 Flow path 1-2:3:4 none Flow path 4 Flow path 1.2:3:4 none		\downarrow		
Flow Pow path Detection in flow cell(s): 3.4 Detection in flow cell(s): 3.4 Prow path 1 Prow path 2 Prow path 3 Prow path 4 Prow path 4 Prow path 4 Prow path 4 Prow path 4 Prove path 4	🐻 Manual Run			X
Flow path Beference subtraction: Flow path 1 Flow path 12 Flow path 2 Flow path 34 Flow path 1-2:3-4 Flow path 4 None	Flow Flow rate: 30 (µl/min))		Reagent Rack 2 Image: Control of the cont
Flow path 1 Flow path 2 Flow path 2 Flow path 3 Flow path 4 Flow path 4 Flow path 4 Flow path 1 Flow path 2 Flow path 3 Flow path 4 Flow path 4	Flow path Detection in flow cell(s): 3,4		<u>R</u> eference subtraction:	
Flow path 3 Flow path 1-2:3-4 Flow path 4	Flow path 1	Flow path 1-2	4-3	None
	Flow path 3 Flow path 4	Flow path 1-2-3-4	none 💉	
Help Fiet Back Start Close	Help Fiect Back			Start

流速(Flow rate)(30 µl/min)を入力します。Flow path でアナライトを添加するリファレンスセルと固定化セルを選択します。必ず、Reference subtraction でリファレンスセルの
 差し引きを設定します。(選択肢として 2-1, 4-3 または、2-1, 3-1, 4-1 があります。)
 Rack の種類を選択し、Start をクリックします。

 \downarrow

測定結果の保存先を指定し、File name を入力して Save をクリックします。

 \downarrow

センサーグラムが表示され測定が開始されます。

📠 Biacore T200 Control Softwa	are - [regen	eration c	heck.blr]										
🗄 🔛 File Edit View Command	ds Run T	ools Hel	lp										- 8 ×
<u> </u>	〈る」の	iyde: 1	- 0	Curve: — :	5ensorgram	Fc=3			• <u></u> / 理	-			
⋶∎ ∕∕/!ፄ 00 <u> </u> . 12 /×14	RU 40000											L	ock scale
🖌 🛅 New Cycle 30 4-3	35000 -												
	30000 -												
	25000 -												
	20000 -												
	5 15000 -												
	a 10000 -												
	5000 -												
	0												
	-5000 -												
	-10000 -		5	10				25	30	35	40	45	i 50
							Tir	ne					s
	Fc Time	Window	AbsResp	SD LRS	D Slope	RelResp	Baseline	ld			Keywords in cycle 1	Value	
										In the second se			
Flow: 30 Flow Path: 3,4													
Online - COM1 Temp	perature: 25.00	0 ℃	Running	manual run.									
Sample compartment temperature - curr	rent: 25 °C se	t: 25 °C	Run time	e: 1 min									

補足 4-2. センサーグラムの表示変更

View → Show Only Current Curve 選択したセンサーグラムを1本表示します。 右上のカーブリストから、表示するセンサーグラムを選択します。

View \rightarrow Show All Curves

すべてのセンサーグラムを表示します。

View \rightarrow Show Curves of Same Type

センサーグラムを種類別に表示します。 右上のカーブリストから、各フローセルのセンサーグラムもしくは差し引きセン サーグラムのいずれかを選択して表示することができます。

 \downarrow

Inject command アイコン (\checkmark ;赤色) または Menu bar の Commands \rightarrow Inject...を選択 します。

	\downarrow		
Inject			×
Vial/well <u>p</u> osition:	R2 B1 📑		ОК
<u>C</u> ontact time:	120	(s)	Cancel
			<u>H</u> elp
Minimum required	volume in vial/	well for this injec	tion: 88 (μl)

アナライトの位置(Vial/well position)および、添加時間(contact time)60~120 秒を入 力すると、Inject ダイアログの右下に必要なサンプル量が表示されます。

 \downarrow

一旦、Cancel をクリックし、Eject rack tray アイコン (□) または Menu bar の Commands → Eject Rack を選択します。

ラックトレイを取り出して、アナライトを分注したバイアルをセットします。ラックトレ イを再び本体に戻して **OK** をクリックします。

Inject command アイコンを選択します。

 \downarrow

アナライトの位置および添加時間(s)を入力します。OK をクリックします。

アナライトの結合を確認します。再生の必要がある場合には引き続き検討します。

Regeneration command アイコン (\swarrow ;青色) または Menu bar の Commands \rightarrow Regeneration...を選択します。

T

	\checkmark	
Regeneration		
Vial/well <u>p</u> osition:	R2 B2	ОК
<u>C</u> ontact time:	60 (s)	Cancel
☐ High viscosity s	olution	<u>H</u> elp
Minimum required	volume in vial/well for this	injection: 72 (μl)

再生溶液の位置および添加時間(30~60s)を入力して、OK をクリックします。

(再生溶液をセットしていない場合には、必要容量確認後、一旦、**Cancel** をクリックして バイアルをセットします。)

 \downarrow

レポートポイントまたはリファレンスラインウィンドウを利用して、再生溶液添加後のレ スポンス (RU) が、アナライト添加前のレスポンス (RU) に近いかどうかを確認します。 不十分な場合には、引き続き検討します。

Ţ

固定化リガンドの活性および再現性を確認します。

New Cycle アイコン(); アイコンが並んでいる下段左から1番目)をクリックし、測定 サイクルを切り替えます。同濃度のアナライトを添加し、前回のアナライト結合レスポン スと比較してください。引き続き再生します。

Ţ

すべての検討が終了したら、End Manual run アイコン($[_]$)または Menu bar の Commands \rightarrow End Run をクリックします。装置は自動的に Standby flow 状態になります。 測定データははじめに入力したファイル名で自動的に保存されます。

補足 4-3. リファレンスウィンドウを利用した再生の確認方法

Tool bar の Reference Line アイコン +) あるいは View → Reference Line をクリック し、センサーグラム上にリファレンスラインを表示させます。同時にセンサーグラム左上 にリファレンスラインウィンド (Reference Line) が表示されます。

マウスのカーソル(矢印)をリファレンスラインの縦線上に移動後、マウスの左ボタンを ドラッグし、ベースラインを取りたい時間に移動します。もしくはベースラインを取りた い場所のセンサーグラム上の位置でカーソルをクリックし、リファレンスラインを移動し ます。

View → Base Line をクリックする(もしくは F9 ボタンを押す)と、リファレンスライン ウィンドウのレスポンスが相対値 0 となります。リファレンスラインの縦軸にもう一度カ ーソルをあわせ、左ボタンでドラッグし移動させると、リファレンスウィンドウにベース ラインとして設定した位置からのレスポンスが表示されます。 52 4. マニュアル測定による相互作用の条件検討

5. 相互作用測定

実験目的に応じたウィザードまたはメソッドのテンプレートに、サンプル名や添加情報お よび再生条件等、必要事項を入力するだけで、プログラムを組み立てることができます。 この章では、反応速度定数および解離定数の算出(マルチサイクル法およびシングルサイ クル法)のテンプレートを利用した基本的なプログラム作成について記載します。その他 アプリケーションの測定方法および解析手法は、「BiacoreT200日本語取扱説明書 応用編」 をご覧ください。メソッド作成方法の詳細は6章を参照してください。

ウィザードテンプレートを利用

反応速度定数および解離定数の算出 マルチサイクル法

	Kinetics/Affinity	54 ページ
濃度測定	Concentration Analysis	応用編
結合の有無の確認、スクリーニング	Binding Analysis	応用編
熱力学的パラメータの算出	Thermodynamics	応用編
低分子化合物アナライトの反応速度定数およ	び解離定数の算出	
	Kinetics/Affinity	応用編
免疫原性試験	Immunogenicity	応用編
メソッドテンプレートを利用		
反応速度定数および解離定数の算出(シンク	「ルサイクル法	
	Single-cycle kinetics	93 ページ
検量線不要の濃度測定	Calibration-Free Concentration	応用編
低分子化合物アナライトのスクリーニング	LMW screen	応用編
結合アナライトの回収	Inject and recover	応用編

5-1. 反応速度定数・解離定数の算出 マルチサイクル法

マルチサイクル法とシングルサイクル法

1 濃度のアナライト添加とリガンドの再生操作を1サイクルとして、濃度が異なるアナライトを繰り返し測定し、得られたセンサーグラムから反応速度定数・解離定数を算出する方法をマルチサイクル法といいます。一方、異なるアナライト濃度系列を再生操作なしに低濃度側から連続添加し、得られたセンサーグラムを利用して反応速度定数・解離定数を算出する方法をシングルサイクル法といいます。

シングルサイクル法

アフィニティーとカイネティクス

分子同士が相互作用する時には、両者にはアフィニティー(親和性)があると表現します。 解離定数は、アフィニティーの強さを表す尺度として一般的に使用され、K_D(単位 M)と して記述されます。その逆数 1/K_D(=K_A、単位 1/M)が用いられることもあります。解離定 数は、A+B⇔AB反応の平衡状態において、K_D = [A] [B] / [AB] と定義されます。形成さ れる複合体の割合が多いほど、つまり、この数値が小さいほどアフィニティーは強いと表 現できます。Biacore を用いたカイネティクス解析では、アフィニティーは、その分子間の 反応速度定数から算出します (K_D = k_d / k_a)。速い結合および遅い解離の相互作用ほど、ア フィニティーは強くなります。これら反応速度(カイネティクス)に関するパラメータは、 結合速度定数(k_a 、単位 M⁻¹s⁻¹)、解離速度定数(k_d 、単位 s⁻¹)として表現されます。

 $K_A = k_a/k_d$

解離定数(K_D)、反応速度定数(*k_a、k_d*)の算出方法

カイネティクス解析では、得られたセンサーグラムに直接反応速度式をカーブフィッティ ングさせ、非線形最小二乗法により定数を導き出します。

アフィニティーの弱い(≒結合解離が速い)相互作用の場合、反応はきわめて速く平衡状態(Req)へと移行しますが、複合体の安定性は悪いため、センサーグラムは『箱型』となります。結合領域および解離領域はきわめて短く、カーブフィッティングによる反応速度 定数の算出は困難です。

カーブフィッティングによる解析

アフィニティーが弱い反応

Req vs C のプロットからの平衡値解析

このような場合、アナライト濃度(C)に対する平衡値(Req)のプロットから、親和定数(K_A)あるいは解離定数(K_D)を算出します。平衡状態では、以下の関係式が成り立ちます。

 $Req = C \times R_{max} / (C + K_D)$

至適なアナライト濃度

良好な結果を得るためには、予想される解離定数(K_D)値の 1/10~10 倍の濃度で測定しま す。結合速度または解離速度が遅く、結合領域のセンサーグラムの傾きが直線的な場合に は、センサーグラムのカーブが得られる高濃度領域も測定すると良好な解析結果が得られ ます。また、5段階以上の濃度系列と濃度0(アナライトを含まない緩衝液のみ)について 測定し、1 濃度については再現性の確認目的で2回(n=2)測定します。

アフィニティーが弱く、箱型のセンサーグラムになり、カイネティクス解析が困難な場合 は、10 段階以上の濃度系列と濃度 0 について測定します。濃度範囲は高濃度側まで幅広く とることを推奨します。

至適な流速

30 µl/min 以上の高流速に設定します。

アナライト添加時間と解離時間

通常は、添加 2 分程度、解離 2 分程度で測定します。ただし、結合速度が遅く結合領域の センサーグラムが直線的な場合には、カーブが得られるよう添加時間を 5~10 分程度にし ます。また、解離速度が遅く、解離領域の傾きがほとんど確認できない場合には、解離時 間を 10~30 分程度で測定します。

<u>5-1-1. プログラムの実行</u>

Toolbar \mathcal{O} Run Wizard $\mathcal{P}(\neg \mathcal{V})$ at the Menu bar \mathcal{O} Run \rightarrow Wizard... $\mathcal{E}(\mathcal{V})$ at the set of the set of

		\downarrow			
🔤 Open/New Wizard Template					
Surface Preparation Immobilization pH Scouting Immobilization pH Scouting Resentation Scouting Surface Performance Control Experiments Kinetics - Linked Reactions Kinetics - Mass Transfer Assay Kinetics Affinity Grading Analysis Thermodynamics Immunogenicity Screening Immunogenicity Screening Immunogenicity Screening Immunogenicity Screening Immunogenicity Screening Immunogenicity Screening	Look in: Name	Methods And	1 Templates	Туре	ŧ ř
	<				>
Help Browse			<u>N</u> ew	Open	ancel

Assay → Kinetics/Affinity を選択した後、New...をクリックします。以前にプログラムを Methods and Templates フォルダに保存している場合は、右側の一覧表に反映されます。 同じプログラムを実行したい場合は、Open...をクリックします。別のフォルダに保存され ているプログラムを実行したい場合は、Browse...をクリックし、目的のプログラムをハイ ライトにして Open...をクリックします。

	\downarrow
🔤 Kinetics/Affinity - Injection	Sequence 🛛 🔀
Elow path: 2-1	Chip Chip type: CM5 V
SAMPLE	 Capture ✓ Sample ✓ Regeneration 1 ✓
	Carry Over
<u>H</u> elp	Back Next > Close

1サイクル分の測定シークエンスを設定します。

Detection

Flow path 2-1 または 4-3 から選択します。

Chip

Chip type 利用するセンサーチップの種類を選択します。

Capture

アナライトの添加前に、固定化したキャプチャー分子に対して、リガンドを捕捉 する場合にチェックを入れます。リガンドは、フローセル2もしくはフローセル4 にキャプチャーされます。

Sample

アナライトの添加。

Regeneration

再生が必要な場合にチェックを入れます。添加回数を選択します。(1 or 2 回)

Carry Over

アナライト添加後、アナライトがキャリーオーバーするかどうかランニング緩衝 液を添加して確認する場合にチェックします。

L

Next >をクリックします。

↓
🔤 Kinetics/Affinity - Setup
Conditioning
<u>R</u> un conditioning cycle
Solution:
Contact time: (s) Number of injections: 3
Startup
✓ Bun startup cycles
Solution: buffer
Number of cycles: 3
Solvent correction
□ <u>R</u> un solvent correction Number of injections: 8
Repeat after sample cycles
Help < Back Next > Close

ダミーランサイクルを設定します。

Startup

Solution

指定した溶液で、相互作用測定と同様の工程をアナラ イト測定前に実施します。通常は、ランニング緩衝液を

用います。Number of cycles サイクル数です。3 回以上を推奨します。

 \downarrow

Next >をクリックします。

	Kinetics/Affinity - Injection	n Parameters	
	Contact time: 120 (s) Flo	w rate: 30 (ul/min) Dissociation time:	120 (s)
	Extra wash after injection with:		
	Regeneration		
	Solution: Gly-HCl pH2.5	High <u>v</u> iscosity	solution
	Contact time: 60 (s) <u>F</u> lo	w rate: 30 (μl/min) Stabilization <u>p</u> eriod	: 0 (s)
	<u>H</u> elp	< <u>B</u> ack <u>N</u> e	ext > <u>C</u> lose
Sample			
C	ontact time	アナライトの添加時間	通常 120 s
F	low rate	流速	通常 30 µl/min
D	Dissociation time	解離時間	通常 120 s
Regenerat	tion(再生条件を検討し、	確定した条件を入力します	†)
s	olution	再生溶液の名称	
F	ligh viscosity solution	粘性の高い溶液(40% エ	チレングリコール以上)の
		場合はチェックを入れてく	ださい。
с	ontact time	再生溶液の添加時間	
F	low rate	流速	
s	tabilization period	再生溶液添加後のベースラ	イン安定化時間
		(必要に応じて設定します	-)
			0/

入力後、Next >をクリックします。

 \downarrow

	Sample id	MW (Da)	Concentration	Concentration		
	Sample la		nM 🗸	µg/ml 🕞		
1	antigen1	11500	0	0.000		
2	antigen1	11500	0	0.000		
3	antigen1	11500	1.1	0.01265		
4	antigen1	11500	2.2	0.02530		
5	antigen1	11500	4.3	0.04945		
6	antigen1	11500	8.5	0.09775		
7	antigen1	11500	17	0.1955		
8	antigen1	11500	1.1	0.01265		
9	antigen2	11500	0	0.000		
10	antigen2	11500	0	0.000		
11	antigen2	11500	1.1	0.01265		
12	antigen2	11500	2.2	0.02530		
13	antigen2	11500	4.3	0.04945		
14	antigen2	11500	8.5	0.09775		
15	antigen2	11500	17	0.1955		
16	antigen2	11500	1.1	0.01265		
17	antigen3	11500	0	0.000		
18	antigen3	11500	0	0.000		

Sample id	アナライトの名称
MW (Da)	アナライトの分子量
Concentration	アナライトの濃度(単位も選択)
	分子量と濃度を入力すると、自動的に"モル濃度 nM "と
	"重量濃度 μg/ml"を換算します。

入力後、Next >をクリックします。

補足 5-1. アナライト濃度

測定サンプル濃度は、アナライト5段階以上の濃度シリーズ と"0(ゼロ)濃度の測定を推 奨しています。また、測定中のリガンドの安定性確認のために"0(ゼロ)"以外で最低1濃 度を2回測定することも推奨しています。このルールに従わない場合、Next>をクリックし た時に推奨項目を列挙した画面が表示されます。

Recommended settings are not followed	
Sample serie, sampler The sample series should contain at least one sample with zero (0) concentration The sample series should contain at least five (5) different concentrations. The sample series should contain at least one non-zero concentration that is to be run at least two (2) times.	

推奨を無視して測定する場合は、Ignore をクリックし次のステップに進んでください。

補足 5-2. Excel ファイルで作成したサンプル情報の入力

Excel ファイルで作成したサンプル情報を移行するには、Excel での保存時、タブ区切りのテ キストファイル(拡張子は txt)を選択します。タブ区切りで保存したデータを上記画面で

開き、コピーペーストで入力することができます。

	\downarrow
🔚 Kinetics/Affinity - System Prep	arations 🛛 🔀
 ✓ Prime before run ☐ Normalize detector 	
Temperature settings Analysis temperature: Sample compartment temperature:	25 (°C) 25 (°C)
Help Cycle Run List	< <u>B</u> ack <u>N</u> ext > <u>C</u> lose

測定を始める前に、Prime および Normalize を実施したい場合はチェックをします。

Temperature settings

Analysis temperature	25℃
Sample compartment temperature	25° C

Cycle Run List...をクリックすると、測定サイクルの確認ができます。

l∞ Kin	etics/Affinity - Cy	rcle run list		
Cycle	Assay step name	Sample 1 Solution	Sample 1 Conc (nM)	Sample 1 MW (Da)
1	Conditioning			
2	Startup	buffer		
3	Startup	buffer		
4	Startup	buffer		
5	Sample	antigen1	0	11500
6	Sample	antigen1	0	11500
7	Sample	antigen1	1.1	11500
8	Sample	antigen1	2.2	11500
9	Sample	antigen1	4.3	11500
10	Sample	antigen1	8.5	11500
11	Sample	antigen1	17	11500
12	Sample	antigen1	1.1	11500
13	Sample	antigen2	0	11500

Next >をクリックします。

 \downarrow

ample and Reagent Rack 1	Position	Volume (µl)	Content	Туре	Sample 1 Conc (nM)	Sample 1 MW (Da)
15 () () () ()	R1 A1	118	antigen1	Sample	0	11500
	R1 A2	118	antigen1	Sample	0	11500
1 * O O O11 O O 💢	R1 A3	118	antigen1	Sample	1.1	11500
	R1 A4	118	antigen1	Sample	2.2	11500
	R1 A5	118	antigen1	Sample	4.3	11500
\frown	R1 A6	118	antigen1	Sample	8.5	11500
	R1 A7	118	antigen1	Sample	17	11500
$(\bigcirc \bigcirc $	R1 A8	118	antigen1	Sample	1.1	11500
	R1 A9	118	antigen2	Sample	0	11500
⁰ () ()₀()	R1 A10	118	antigen2	Sample	0	11500
	R1 A11	118	antigen2	Sample	1.1	11500
$^{\prime} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	R1 A12	118	antigen2	Sample	2.2	11500
	R1 A13	118	antigen2	Sample	4.3	11500
	/ R1 A14	118	antigen2	Sample	8.5	11500
\sim \sim \sim \sim \sim \sim \sim \sim \sim	R1 A15	118	antigen2	Sample	17	11500
	R1 B1	118	antigen2	Sample	1.1	11500
· <mark>○ ○</mark> ○ ⁶ () () ∖ ∖	/ R1 B2	118	antigen2	Sample	0	11500
	R1 B3	118	antigen3	Sample	0	11500
$(\bigcirc \bigcirc \bigcirc \bigcirc 4(\bigcirc))$	R1 B4	118	antigen3	Sample	1.1	11500
	R1 B5	118	antigen3	Sample	2.2	11500
$\mathbf{O} \mathbf{O} \mathbf{O}_{i} \mathbf{O} \mathbf{O} \mathbf{a}$	R1 B6	118	antigen3	Sample	4.3	11500
\bigcirc	R1 B7	118	antigen3	Sample	8.5	11500
	R1 B8	118	antigen3	Sample	17	11500
$(\bigcirc \bigcirc \bigcirc \bigcirc^{i} \cup \cup \bigcirc \frown$	R1 B9	118	antigen3	Sample	1.1	11500
	R1 B10	118	antigen3	Sample	0	11500
' <mark>\) \</mark>	R1 B11	118	antigen3	Sample	0	11500
A B C D E F	R1 C1	334	buffer	Startup		
	R1 F1	541	buffer	Regeneration		
	R1 F2	1763	Gly-HCl pH2.5	Regeneration		

右側の表でサンプルの位置とサンプル量(µl)を確認します。表中のサンプルをクリックす るとそれに対応するラック上の位置が強調表示されます。位置と容量を確認しながらバイ アルおよびサンプルをラックにセットします。

補足 5-3. サンプル位置の変更

サンプル位置は、上記画面に切り替わった時点で自動的に設定されます。あらかじめサン プル位置が決まっているプレートを使用する場合は、画面左下の Menu → Export Positions...を実行し、サンプル位置をタブ区切りのテキストファイルとして保存します。必 要事項を変更した後ファイルを保存し、Menu → Simple Position Import...でそのファイル を読み込むと、サンプル位置が変更されます。

補足 5-4. 同一バイアルからのサンプリング設定

サンプル位置は、同一サンプルであっても、添加回数分、分注して配置されるように組ま れています(例えば同一の Control Sample であっても、R1A1 から R1A12 に 12 バイアルに 分けてセットするように指示されます)。同一サンプルを同バイアルから使用したい場合は プーリング機能を利用します。

🔚 060327 Thermo - Rack Positions					
Reagent Rack 2	Position	Volume (µl)	Content	Туре	Sample 1
(1007)	R1 A1	148	Negative control	Control sample	40
	R1 A2	148	Negative control	Control sample	40
	R1 A3	148	Negative control	Control sample	40
	R1 A4	148	Negative control	Control sample	40
	R1 A5	148	Negative control	Control sample	40
$\bigcirc \bigcirc $	R1 A6	148	Negative control	Control sample	40
	R1 A7	148	Positive control	Control sample	40
	R1 A8	148	Positive control	Control sample	40
96 Deep Well Microplate	R1 A9	148	Positive control	Control sample	40
	R1 A10	148	Positive control	Control sample	40
	R1 A11	148	Positive control	Control sample	40
	R1 A12	148	Positive control	Control sample	40
"\\000000	R1 B1	148	Analyte A	Sample	0
*^^^^^^^^^^^^^	R1 B2	148	Analyte A	Sample	160
	R1 B3	148	Analyte A	Sample	10
	R1 B4	148	Analyte A	Sample	20
	R1 B5	148	Analyte A	Sample	40
7000000	R1 B6	148	Analyte A	Sample	80
	R1 B7	148	Analyte A	Sample	160
	R1 B8	148	Analyte A	Sample	0
	R1 B9	148	Analyte A	Sample	160
40000	R1 B10	148	Analyte A	Sample	10
	R1 B11	148	Analyte A	Sample	20
	R1 B12	148	Analyte A	Sample	40
	R1 C1	148	Analyte A	Sample	80
	R1 C2	148	Analyte A	Sample	160
ABCDEFGH	21.02	140	And In A	Cample	0
Help				< Back Next >	<u>C</u> lose

Menu から Automatic Positioning...を選択します。

Control sample Cyan Column Bottom left Sample DarkBlue Column Bottom left Sample Sample Content - Ascending Auto Content - Ascending N Mov Sample Crimson Column Bottom left Sample Sample Sample Content - Ascending N Mov Content - Ascending N Mov Sample S	Control sample Cyan Control sample Column Bottom left Sample Small Auto Content - Ascending N Move Do Sample Column Column Bottom left Sample Small Auto Content - Ascending N Move Do Sample Small Auto Content - Ascending N Move Do Sample Small Auto Content - Ascending N Move Do Sample Small Auto Content - Ascending N Move Do Sample Small Auto Content - Ascending N Move Do Sample Small Auto Content - Ascending N Move Do Solvent correction (buffer A) Blue Column Bottom left Reagent Small Auto Content - Ascending N Auto Content - Ascending N N Auto Content - Ascending N	Region	Color		Orientat	ion	Anchor		Rack		Vial Si	że 🛛	Poo	ing	First Sort By		Move U
Sample DarkBlue v Column v Bottom left v Sample v Mov Startup Crimson v Column v Bottom left v Small v Auto v content - Ascending v v Wash V Vellow v Column v Bottom left v Reagent Large v v content - Ascending v v Solvent correction (buffer A) Blue v Column v Bottom left v Reagent v Small Auto v Content - Ascending v v	Sample DarkBlue Column Bottom left Sample Sample Sample Sample Sample Move Do Startup Crimson Column Bottom left Sample Sample Sample Sample Value Content - Ascending N Wash Yellow Column Bottom left Reagent Large Auto Content - Ascending N Solvent correction (buffer A) Blue Column Bottom left Reagent Small Auto Content - Ascending N	Control sample	Cyan	-	Column	-	Bottom left	-	Sample	-	Small	-	Auto	-	Content - Ascending	💌 D	
itartup Crimson Column Bottom left Sample Small Auto Content - Ascending N Solvent correction (buffer A) Blue Column Bottom left Reagent Small Auto Content - Ascending N Solvent correction (buffer A) Blue Column Bottom left Reagent Small Auto Content - Ascending N Solvent correction (buffer A) Blue Solvent correction (buffer A) Small Auto Content - Ascending N Small Auto Content - Ascending N Small Auto Content - Ascending N Small Small Auto Content - Ascending N Column Column Column Column Small Auto Content - Ascending N Column Column Column Column Column Column Column Column Column Col	Startup Crimson Column Bottom left Sample Sample Sample Auto Content - Ascending N Wash Yellow Column Bottom left Reagent Large Auto Content - Ascending N Solvent correction (buffer A) Blue Column Bottom left Reagent Small Auto Content - Ascending N	jample 🛛	DarkBlue	-	Column	-	Bottom left	-	Sample	•	Small	-	Auto	-	Content - Ascending	👻 D	Move Dou
Wash Image: Column	Wash Vellow Column Bottom left Reagent Large Auto Content - Ascending I Solvent correction (buffer A) Blue Column Bottom left Reagent Small Auto Content - Ascending I	Startup	Crimson	-	Column	-	Bottom left	-	Sample	-	Small	-	Auto	-	Content - Ascending	🔸 N	
iolvent correction (buffer A) 💼 Blue 🔍 Column 💌 Bottom left 💌 Reagent 💌 Small 🔤 Auto 🚽 Content - Ascending 🔍 💌	iolvent correction (buffer A) 🗾 Blue 🔹 Column 💌 Bottom left 💌 Reagent 💌 Small 🚺 Auto 🚽 Content - Ascending 💌 N	∀ash [Yellow	-	Column	-	Bottom left	-	Reagent	-	Large	1-	Auto	-	Content - Ascending	- P	
		Solvent correction (buffer A)	Blue	-	Column	-	Bottom left	-	Reagent	-	Small	X	Auto	1	Content - Ascending	💌 P	
		iolvent correction (buffer A)	Blue	-	Column	-	Bottom left	-	Reagent	•	Small	1	Auto	J	Content - Ascending	- N	

↓

ここで、すべてのサンプルと試薬に関する配置設定が可能です。

"Pooling"の項目は、通常、Auto になっています。

同一バイアルからサンプリングしたいサンプル、試薬の種類について、"Pooling"のプルダ ウンメニューから Yes を選択し、ダイアログ右下の OK をクリックします。

なお、Automatic Positioning ダイアログでは色やバイアルのサイズの設定もできるので、

これらも必要に応じて適宜設定を変更してください。

Eject Rack をクリックして、Rack tray port を開きます。

ラックトレイを奥まで挿入し、OK をクリックします。

Eject Rack Tray ダイアログが閉じた後、**Rack Positions** ダイアログ右下の Next >をクリックします。

Ţ

基本的な注意事項、固定化時間、必要なランニング緩衝液量が表示されます。 Start をクリックします。

 \downarrow

設定したウィザードをテンプレートとして保存するかどうか、メッセージが表示されます。 保存の場合は、Save as で Methods and Templates フォルダまたは Bia Users の各自のフォ ルダに保存します。保存しない場合は、Don't Save を選択します。

Save in:に測定結果の保存先を設定し、File name にファイル名を入力して、Save をクリックすると測定が開始されます。

 \downarrow

終了後、装置は Standby flow 状態になります。

測定データは入力したファイル名で自動保存され、Biacore T200 Evaluation Software が自動 的に起動して、各サイクルの測定結果が重ね書き表示されます。

↓

補足 5-5. プログラムの緊急停止										
Run \rightarrow Stop Run をクリックします。										
Biacore T200 Image: Cancel Image: This will stop the run Image: Cancel Image: Help Image: Stop Run Cancel										
ボックス中の Stop Run をクリックします。										
\checkmark										
Run Stopped										
Finishing current cycle, please wait Abort cycle by [Ctrl]+[Break]										
実行中の測定サイクルが終了するまで待機し終了します。										
上記ウインドウが開いている状態で、ただちにプログラムを終了したい場合には、画面の										
表示に従い、キーボードの [Ctrl] キーと [Break] キーを同時に押します。										
終了した時点までのデータが Biacore T200 Evaluation Software に移行します。										

5-1-2. カーブフィッティングによる解析

ウィザードを用いた測定プログラム終了後、Evaluation ソフトウェアは自動的に立ち上がり、 自動保存された取得データが開きます。

補足 5-6. サンプル情報の変更

サンプル濃度および濃度	度単位、 ⁻	サン	プルロ	の名	称など入力ミスがあった場合は、解析を実行
する前に、 Keyword tal	oleで変	更し	ます。	Т	ools → Keyword Tableをクリックします。
リガンド名の変更は、存	言下の Ed	it Ch	ip Inf	forn	nation をクリックして変更します。
	Connect Little				
	Calls Anno per pages	. Sandh	Free last	Mur Dat	
	*	10 10	M		Panel Al Fibra
	1 State	byfer.	1	1	
	2 Statup	buller	1	1	
	3 Value	belle .	1		Additional
	 Solvent comotion Costud sustain 	and the second			[Parametranet]
	E Control Langle	initian a			
	7 Control cangle	\$1080	50	33.76	Finance Reported
	8 Sangle	A,1	0	207.74	
	3 Sangle	A.1	6.25	292.74	
	10 Sanpile	A.1	12.6	297.74	
	11 Sariple	A.1	25	297.74	
	12 Sargle	A.1	50	297.74	Concentration Cont
	13 Sarger	4.5	100	207.78	
	10 Sarole	- 21	200	101.14	
	10 Landa	81	0	228.21	
	17 Sargie	8.1	6.25	229.21	
	10 Sangle	1.1	12.6	228.21	
	15 Sargin	8,1	3	228.29	
	20 Sarple	3.3	98	229.21	
	21 Sarph		500	229.24	
	22 Sangle	8.3	200	228.21	
	22 Sangle	A.1	0	101.0	
	N Control canada	in the second se			
	26 Control sample	\$1080	50	37.78	
	27 Sanda	0.1	0	268.27	
	20 Sanch	0.1	6.25	288.27	Edd Dep Internation
	2% Sargili	0,1	12.6	268.27	*


```
Toolbar の Minetics / Affinity ▼ をクリック後、 Margace bound をクリックします。
```

🔁 Kinet	ics / Affin	ity - Select (Curves [Crea	te]					×
-Selectev	valuation mo Single mo	de 🔿	Batch mode						
`	U Uligio Inc		bakolitinodo						
Curves-									
Curve:	Fc=2-1	🔽 Liga	and: antibody	10ug/ml ; 🔽 🥬 🧐	ample: antigen	1 💌	Temperature:	25 🔽	
Include	Cycle#	Conc (nM)	Flow (µl/min)	Contact Time (s)	Diss. Time (s)				^
	5	1.1	30	120.0	180.1				
	6	2.2	30	120.0	180.1				=
	7	4.3	30	120.0	180.1				
	8	8.5	30	120.0	180.0				
	9	17	30	120.0	180.1				
	10	1.1	30	120.0	180.1				
	11	0	30	120.0	180.1				
	12	0	30	120.1	180.0				~
BU	:								
RU ,									Zoom lock
90 -									
70 1									
8 50 -									
			/						
≝ ³⁰ †									
10 +									
-10 				+ +	+ +	+ + +	· · · · ·		
-100)	-50	0	50	100	150 200	250	300) 350
		–			Time				s
🗹 Show	w concentral	ion series	Show blank(s	J Show	average blank(s)				
Help		<u>M</u> ultiple Rr	nax	Adjust Injection	Events		< <u>B</u> ack	<u>N</u> ext>	Cancel

 \downarrow

同一サンプル名のセンサーグラムがすべて重ね書き表示されます。

Select Evaluation mode で解析方法を選択します。1 サンプルごとに解析する場合には、 Single mode を選択します。複数サンプルをバッチ解析する場合は、Batch mode を選択し ます。Bath mode については、補足 5-14 を参照してください。

複数のサンプルについて同時に測定している場合は、Sample:右側の ▼をクリックすると、 別サンプルのデータに移行できます。

ゼロ濃度のブランクサイクルを複数回測定している場合、センサーグラム下の Show average blank (s) にチェックを入れると、平均したセンサーグラムが表示されます。

エアーの混入などの理由で、解析データから削除したいセンサーグラムがある場合は、そのセンサーグラムについて、テーブル中の Include カラムのチェックを外してください。
Select ev	aluation mo	de							
0	Single mi	ode 🤇) Batch mode						
Curves									
Curve:	Fc=2-1	👻 Li	gand: antibody	10ug/ml ; 🛩	Sample: antiger	n1 🗸	Temperature:	25 🔽	
Include	Cycle#	Conc (nM)	Flow (µl/min)	Contact Time (s)	Diss. Time (s)				^
	5	1.1	l 30	120.0	180.1				
✓	6	2.2	2 30	120.0	180.1				
✓	7	4.3	3 30	120.0	180.1				
Z	8	8.5	5 30	120.0	180.0)			
Z	9	17	7 30	120.0	180.1				
	10	1.1	30	120.0	180.1				
V	11	() 30	120.0	180.1				
	12	l	J 3U	120.1	180.0	1			~
						:			<u> </u>
RU									Zoom lock
90 I						_			
70 1				_					
50 1						· · · · · · · · · · · · · · · · · · ·			
₿ 30 									
10 -									
-10									
-100)	-50	0	50	100	150 200	250	300	350
Times									
Show concentration series V Show blank(s) Show average blank(s)									
Halp Multiple Rmax Adjust Injection Events Z Back Next S Cannel									

自動的にテーブル下のチャートから、チェックを外したセンサーグラムは消えます。 Next >をクリックします。

 \downarrow

日本語取扱説明書

濃度0のセンサーグラムが、ブランクとして、全センサーグラムから差し引かれます。 Kinetics >をクリックします。

Ţ

補足 5-8. センサーグラムの部分的削除

エアーの混入や添加開始・終了点のノイズなど、解析データの中から一部削除したい領域 がある場合には、マウスの左ボタンをドラッグし該当の領域を拡大したのち、マウスの右 ボタンをドラッグして削除する領域を選択します。拡大図を解除する場合は、センサーグ ラムを含まない余白をダブルクリックすると、一つ前の縮小画面に戻ります。

タンをクリックすると選択部位が削除されます。

 \downarrow

Model:に、フィッティングに採用する反応モデル式を選択します。 をクリックすると、 すべての反応モデルが表示されます。反応モデルが不明な場合は、1:1 Binding を選択します。

選択後、Fit をクリックします。

 \downarrow

補足 5-9. 反応モデル

リガンドを B、アナライトを A とします。

1:1 Binding A + B ⇔ AB リガンドとアナライトが 1 分子同士で結合するもっとも単純な反応モデル。

Bivalent Analyte $A + B \Leftrightarrow AB, AB + B \Leftrightarrow AB2$

アナライトが2価もしくはホモ2量体の反応モデル。AB 複合体形成後、リガンド B が2次的に結合する反応。

Heterogeneous Analyte $A1 + B \Leftrightarrow A1B, A2 + B \Leftrightarrow A2B$

競合反応。リガンド上の1種類の結合部位を2種類のアナライトが競合する反応。

Heterogeneous Ligand A + B1 AB1 , A + B2 AB2

アナライトに対して親和性の異なる 2 つの結合部位を持つリガンドにアナライト が並行して結合する反応モデル。

Two state Reaction $A + B \Leftrightarrow AB \Leftrightarrow AB^*$

リガンドとアナライトの 1 分子同士の結合であるが、複合体形成後コンフォメー ション変化を起こす反応モデル。

解析結果が表示されます。

黒色のセンサーグラムは、フィッティングにより得られたフィッティングカーブです。 既存の 1:1 Binding モデルで解析した場合には、Quality Control テーブルが表示され、解析 結果の評価が表示されます。

補足 5-10. 解析結果の Quality Control

5項目の品質評価結果が、ステータスマークで表示されます。
 ステータスマーク
 クオリティーアセスメントにパスしています。
 クオリティーアセスメントの許容限界に近いです。
 クオリティーアセスメントにパスしていません。
 ニュートラルまたは各自で確認します。

品質評価基準

①速度定数がシステムのスペック範囲内かどうかチェックしています。

スペックに近い場合や、超えている場合には、 🤒 が付きます。

スペック範囲 $k_a = 10^3 \sim 10^7$ (1/Ms)、 $k_d = 10^{-5} \sim 0.5$ (1/s)

②各パラメータが独立して算出されているかどうかチェックしています。

*k*_a、*k*_dおよび R_{max}について解析結果に与える、パラメータ間の相関性を確認しています。マストランスポートリミテーション下で測定した結果は、*k*_a、*k*_dに相関性が見られます。

③溶液効果の値(RI)の妥当性をチェックしています。 リファレンスセルおよびアナライトのゼロ濃度を差し引いている場合には、RI は

74 5. 相互作用測定

限りなくゼロとなりますが、結合・解離速度が速くセンサーグラムが箱型の場合 には、RIの値が大きく算出され、解析結果へ影響を与えます。

④センサーグラムがカーブを描いているかどうか、確認してください。

センサーグラムの結合・解離領域が直線的な場合、得られる解析結果の信頼性は 低くなります。

⑤フィッティングカーブに対して測定プロットがランダムに分散しているかどうか、確認 してください。

> Residuals タブをクリックして、残差プロットを確認します。Y 軸のゼロ近傍(目 安:±1~2 RU)で、ランダムにプロットが分散している場合は良好なフィッティン グと判断できます。緑色のガイドライン内にほとんどのプロットが入っているこ とを確認してください。

Report タブをクリックすると、算出された各種パラメータが表示されています。

 k_d (1/s)
 解離速度定数

 K_D (M)
 解離定数

 R_{max} (RU)
 アナライトの最大結合量

 RI (RU)
 溶液効果 (bulk effect)

 Chi² (RU²)
 カイ二乗

 U-value
 U-バリュー (既存の 1:1 Binding モデル使用時のみ)

↓

上記解析結果は、画面左端の Evaluation Explorer 中のフォルダに追加されます。ファイル 名にはサンプル名が自動的に入力されます。

引き続き、同時に測定した別のサンプルについて解析する場合は、Toolbarの <u>
≪Kinetics / Affinity</u>をクリックします。

補足 5-11. フィッティング結果の評価

フィッティングが良好な場合、センサーグラムとフィッティングによって得られたフィッ ティングカーブがほぼ重なります。センサーグラムの傾きが大きく異なる場合、フィッテ ィングは良好ではないと判断します。また、解析結果の RI 値が O (RU) に近いか確認しま す。統計学的に、以下の各項目を確認します。

Residual

Residuals タブをクリックして、残差プロットを確認します。Y 軸のゼロ近傍(目 安:±1~2 RU)で、ランダムにプロットが分散している場合は良好なフィッティン グと判断できます。緑色のガイドライン内にほとんどのプロットが入っているこ とを確認してください。

Chi²

測定データとフィッティングカーブ間の差を示します。良好なフィッティングで は、シグナルノイズの平均平方値に一致します。

U-value

解析値が信頼できるか否かを判断する値です。15以下であれば問題ありません。 25以上になると、算出された値の信頼性は低くなります。

SE (Standard error)

各パラメータについて SE(標準誤差)が表示されます。各パラメータの解析結果 に対して、SE の値が 10%以下であれば問題ありません。

Check Kinetic Data

解析ウインドウ右上の Tools にあります。マストランスポートリミテーションの影 の強さを確認します。

ウインドウ上の Modification factor M のスライダーを1から10まで移動します。

この際、解析結果の黒色のセンサーグラムに対して、赤色と青色のセンサーグラムの変化を確認します。赤色と青色のセンサーグラムは、黒色のセンサーグラムの ka、ka 値をそれぞれ 1~10 倍変化させて得られるセンサーグラムです。変化が小さい場合には、マストランスポートリミテーションの影響が強いと判断します。

フィッティングが良好ではない要因

①フィッティングに採用したモデルが異なっている

②箱型のセンサーグラムである

③経時的なリガンドの活性低下が考えられる

④再生が不十分である

⑤アナライト濃度の調製ミスが考えられる など

①が要因と考えられる場合は、再度妥当な反応モデルを選択し解析してください。

②が要因の場合、解析結果の RI がセンサーグラムのレスポンスの大半を占める値になることがあります。これは、結合解離領域の急激なレスポンスの変動を RI とみなしてしまうからです。この場合は、RI=0 (Constant)として再解析してください。

複数濃度のセンサーグラムから 1 つの定数を算出する解析方法では、すべての濃度のセン サーグラムにおいて *ka*, *kd*, Rmaxが同一のパラメータであることが前提となります。しかし、 上記③~⑤の実験状況では、各濃度のセンサーグラムにおいて、これらのパラメータは必

ずしも一致しません。

例えば、Rmaxは、リガンドに対するアナライトの最大結合量(RU)であり、理想的な実験系では、連続して同ーセルを使用している限り、どの濃度のセンサーグラムに対しても同ー値となります。ところが、リガンドの再生が不十分な場合や、再生操作によりリガンドの活性がサイクルごとに低下している場合には、Rmaxはサイクルごとに低下します。フィッティングが良好でない要因が、測定結果から明らかに Rmaxにある場合は、Rmaxが同一パラメータであることを解除し再解析してください。

解析したすべての結果は、履歴として、Current Fits ボックスに残ります。 前の解析結果を見る場合は、Current Fits ボックスの目的の反応モデルをクリックすると結 果が表示されます。終了後、Finish をクリックします。

補足 5-13. 解析履歴からの結果の消去						
解析結果を履歴から消去する場合は、 Current Fits ボックス中の目的のデータを選択します。						
Current Fits 1: 1:1 Binding Description: 2: Two State Reaction						
Delete Tools						
Delete をクリックします。						
\downarrow						
Biacore T200 Evaluation Image: Control of the system of						
確認ダイアログが表示されます。						
消去する場合は OK をクリックします。						
\downarrow						
Current Fits						
1: Two State Reaction Description: Delete Tools						
解析結果が消去されます。						

82 5. 相互作用測定

ウインドウ右上の Curves の Include で解析に持ち込むセンサーグラムを選択します。

補足 5-16. 反応速度定数、解離定数のマッピング

Kinetics Summary を使用することで、各サンプルの解析結果の反応速度定数を、Y 軸= k_a 、X $軸=k_a$ のチャートに自動マッピングすることができます。また、Affinity 解析で得られた解離 定数は、別途、Y 軸=K_D、X 軸=サンプルのチャートを作成できます。Biacore T200 Kinetics Summary にデータを持ち込む場合には、事前に解析データを保存しておく必要があります。 別の解析データファイルの結果も同時にプロットしたい場合には、Append File...または File \rightarrow Append File...をクリックして、該当の解析データを読み込みます。

Tools → **Kinetics Summary** をクリックします。Biacore T200 Kinetics Summary が起動し、 **Thumbnails** に、解析ソフトウェアで解析したすべての結果が読み込まれます。

表示方法は、アイコン: ^{●●●}の Small Thumbnails、Standard Thumbnails、Extended Thumbnails から選択できます。また、各サンプルのセンサーグラム上でダブルクリックをすると、解析結果ウインドウが開き、解析結果の詳細を確認できます。

センサーグラムを画像として一括保存したい場合には、File > Save as でファイルを保存後、 Thumbnails 画面上で、マウス右クリック後、Export All Graphs And Table を選択して保存先 を指定してください。または、マウス右クリック後、Copy の Copy All Graphs または Copy All Thumbnails を選択して Paint または WordPad に画像を貼り付けて保存してください。

プロットを画像として保存したい場合には、マウス右クリック後、Copy Graph を選択して Paint または WordPad に画像を貼り付けて保存してください。

<u>5-1-3. 平衡値解析</u>

ウィザードを用いた測定プログラム終了後、Evaluation ソフトウェアは自動的に立ち上がり、 取得データは解析に向け移行されます。

補足 5-17. サンプル情報の変更

サンプル濃度および濃度単位、サンプルの名称など入力ミスがあった場合は、解析を実行 する前に、**Keyword table...**で変更します。**Tools...** → **Keyword Table...**をクリックします。 リガンド名の変更は、右下の Edit Chip Information をクリックして変更します。

1) Falle				
1 premier	in the			Automatication of the second
A data at	1.44			
2000				[Addamat]
a second second				
S. Constants	and shall be			(Instantation)
al Contractor				And a state of the
C.C.mailanak	111000		10.0	(famora figureat)
Claub.	4.1	- 2	ini in	
N Long	AV.	100	init its	
to Lank	4.1	124	yet by	
10 Lenit	A1		2007.24	
17 Lenik	- 23		ini in	
11 Level	41	- 10	107.74	Cavartador 214
14 Lank	21	200	2007 24	
in Lends	21		2012/04	
in Land	21		128.25	
17 Level	A.1	4.00	108.00	
10 Leville	21	124	236.75	
10 Longs	21		206.75	
No. of Concession, No. of Conces			128.25	
D Lands	8.1	100	128.25	
27 Lands	8.1	28	208.21	
11 Levie	8.1	- 10	128.29	
24 Canad canada	-manine	- 6		
25 Canad Langle	resident a	- 2		
20 Control canada	610802		201.76	
17 Laugh	8.1		388.27	
20 Louis	8.3	625	388.29	1.6-W Decisionation.
75 Louis	4.5	125	388.27	

```
Toolbar の Minetics / Affinity ▼ をクリック後、 Margare bound をクリックします。
```

🔁 Kinet	ics / Affini	ty - Select (Curves [Crea	te]					X
⊂ Select e	valuation mod	e							
(Single mod 	de 🔿	Batch mode						
- Curves-									
Curve:	Fc=4-3 corr	👻 Liga	and: N/A	🖌 S	ample: Furosen	nide 🔽	Temperature:	25 🔽	
Include	Cycle#	Conc (µM)	Flow (µl/min)	Contact Time (s)	Diss. Time (s)				^
	46	0	30	180.0	600.1				=
	47	0.079	30	180.0	600.1				
	48	0.157	30	180.0	600.1				
	49	0.313	30	180.0	600.0				
	50	0.625	30	180.0	600.0				
	51	1.25	30	180.0	600.1				
	52	2.5	30	180.0	600.1				
	53	5	30	180.0	600.1				_
	54	10	30	180.0	600.1				<u> </u>
RU									Zoom lock
1 ⁷⁰ I									
50 				-					
9 30 +									
				All mark					
" -10					· · · · · · · · · · · · · · · · · · ·				and the other party succession of
-30 +	0	0	100	200	300	400 500	600	700	800
	-	-			Time		500		s
🔽 Sho	Show concentration series V Show blank(s) Show average blank(s)								
Help		<u>M</u> ultiple Rr	nax	Adjust Injection S	tart		< <u>B</u> ack	Next >	Cancel

↓

同一サンプル名のセンサーグラムが重ね書き表示されます。

Select Evaluation mode で解析方法を選択します。1 サンプルごとに解析する場合には、 Single mode を選択します。複数サンプルをバッチ解析する場合は、Batch mode を選択し ます。Bath mode については、補足 5-14 を参照してください。

複数のサンプルについて同時測定している場合は、Sample:右側の▼ をクリックすると、別 サンプルのデータに移行できます。

ゼロ濃度のブランクサイクルを複数回測定している場合、センサーグラム下の Show average blank (s) にチェックを入れると、平均したセンサーグラムが表示されます。

エアーの混入などの理由で、解析データから削除したいセンサーグラムがある場合は、そのセンサーグラムについて、テーブル中の Include カラムのチェックを外します。 Next >をクリックします。

ゼロ濃度のセンサーグラムがブランクとして、全センサーグラムから差し引かれます。 Affinity >をクリックします。

日本語取扱説明書

アナライト添加終了直前のレスポンス(RU)を平衡値(Req 値)(RU)とし、各アナライト 濃度における Req 値がプロットされます。Next >をクリックします。

X 軸=アナライト濃度(M)、Y 軸=Req(RU)のグラフが表示されます。

Model を選択後、Fit をクリックします。通常は、Steady State Affinity を使用します。

補足 5-18. 平衡値解析のモデル式

平衡値解析のモデル式は次の3つから選択できます。

Steady State Affinity

1:1 Binding モデルで、R_{max}は Fitting パラメータです。次の式を使用します。

$$R_{eq} = \frac{CR_{max}}{K_{D} + C} + offset$$

Steady State Affinity Constant Rmax

1:1 Binding モデルの平衡値解析で、R_{max}を指定した値で解析を行います。低アフィニティー 相互作用で、アナライト濃度を高濃度で確保できない場合に使用します。モデル選択後、Fit をクリックして R_{max} 値を入力します。コントロールサンプルを高濃度で添加して得られる R_{max}を基準として R_{max}を設定します。アナライトの R_{max}算出式は次の通りです。

 $Rmax_{analyte} = Rmax_{control} \times \frac{MW_{analyte}}{MW_{control}}$

Steady State Affinity Constant Rmax (Multi Site)

リガンド上にアフィニティーが異なる結合サイトが 2 つあるモデルです。以下の式を使用 しています。モデル選択後に、結合が強いサイトの R_{max} 値(R_{max1})を入力します。解析時 には、R_{max1} は入力した値で解析を行います。コントロールサンプルを高濃度で添加して得 られる R_{max}を基準として R_{max1}を設定してください。

 $\mathbf{R}_{eq} = \frac{\mathbf{C}\mathbf{R}_{max1}}{\mathbf{K}_{D1} + \mathbf{C}} + \frac{\mathbf{C}\mathbf{R}_{max2}}{\mathbf{K}_{D2} + \mathbf{C}} + \text{offset}$

Kinetics / Affinity - Fit Affinity [Create]		
Curve: Fc=4-3 corr Ligand: N/A	Sample: Furosemide	Temperature: 25 (°C)
CAdd Fit	Current Fits	
Model: • Steady State Affinity	 Steady State Affinity 	Description:
Parameters Fit		Delete
RU	<u>^</u>	
40		
20 20		
10		
		6e-6 7e-6 8e-6 9e-6 1e-5
	Concentration	м
Report Parameters		
KD (M) Rmax (RU) offset (RU) Chi² (RU²)		
8.541E-7 0.0548		
62.05 -0.02500		
		C Back Finish Cancel

終了後、Finish をクリックします。解析結果が表示されます。グラフ上には、X 軸=算出さ れた K₀値(M)のラインが表示されます。

K _D (M)	解離定数
R_{max} (RU)	アナライトの最大結合量
offset (RU)	X = 0 の時の Y 軸の値
Chi ² (RU ²)	カイ二乗

上記解析結果は、画面左端の Evaluation Explorer 中のフォルダに追加されます。ファイル 名にはサンプル名が自動的に入力されます。

引き続き、同時に測定した別のサンプルについて解析する場合は、Toolbar の

<mark>, Kinetics / Affinity ▼</mark>をクリックします。

補足 5-19. 平衡値解析結果の Quality Assessment

平衡値解析において、信頼性の高い解析結果を得るためには、解析結果の Ko 値がアナライ トのもっとも高濃度の 1/2 以下の濃度である必要があります。つまり、アナライトの濃度範 囲が低濃度領域で、Rmax からかけ離れた平衡値範囲で測定している場合には解析結果の信頼 性は低くなります。

解析結果のグラフ上の、X 軸=算出された K₀値(M)のラインが黒色表示の場合は、アナラ イトのもっとも高濃度の 1/2 以下の濃度で算出されていることを表します。

5-2. 反応速度定数・解離定数の算出 シングルサイクル法

マルチサイクル法とシングルサイクル法

54ページを参照してください。

アフィニティーとカイネティクス

54ページを参照してください。

「解離定数(K<u>p</u>)、反応速度定数(*k_a、k_d*)の算出方法

55ページを参照してください。

至適アナライト濃度

良好な結果を得るためには、予想される解離定数(K_D)値の 1/10~10倍の濃度範囲で 5 濃 度測定します。解離定数値が不明な場合には、1 nM~1 μM の範囲で、5 倍希釈系列の5 濃 度のアナライトで測定および解析を行って、算出された暫定的な K_D値から至適濃度範囲を 求めるのが望ましいです。その場合、再生ができるのであればリガンドを再生して、至適 アナライト濃度で再測定できます。再生がで困難な場合には、リガンドを新しいフローセ ルに固定化して、至適アナライト濃度で再測定してください。 また、濃度 0 についてもアナライトと同一条件で測定します。

至適な流速

30.µl/min 以上の高流速に設定します。

アナライト添加時間と解離時間

通常は、添加 2 分程度、解離 2 分程度で測定します。ただし、結合速度が遅く結合領域の センサーグラムが直線的な場合には、カーブが得られるよう添加時間を 5~10 分程度にし ます。また、解離速度が遅く、解離領域の傾きがほとんど確認できない場合には、解離時 間を 10~30 分程度で測定します。

複数のアナライトの測定

通常、シングルサイクル法では、一度相互作用測定をおこなった固定化セルは繰り返し測 定しません。複数アナライトがある場合や再現性を確認する場合には、その都度リガンド を新しいフローセルに固定化してください。ただし、リガンドが安定で、アナライトの解 離速度が速い場合や、結合したアナライトが完全に解離するまでランニング緩衝液を流す プログラムに設定した場合に限り、複数のアナライトを同時に測定することも可能です。

<u>5-2-1. プログラムの実行</u>

Toolbar の Run Method アイコン (言) または Menu bar の Run → Method...をクリックします。

	\downarrow		
Open/New Method			
ook in: 📄 Methods And	Templates		- E 🗗
Name	Туре	Modified	
🖻 Biacore Methods			
Help Browse	Show importable wizard templates	<u>N</u> ew <u>O</u> pen	Cancel

Biacore Methods を選択した後、Open...をクリックします。

ook in: Biacore Methods			
Name	Туре	Modified	
Affinity in solution	Method Builder	3/28/2008	
🛃 Calibration-Free Concentration	Method Builder	3/28/2008	
🗄 GST Kinetics	Method Builder	3/28/2008	
lnject and recover	Method Builder	3/28/2008	
🛃 Kinetics heterogeneous analyte	Method Builder	3/28/2008	
🛃 L1 liposome capture	Method Builder	3/28/2008	
HMW kinetics	Method Builder	3/28/2008	
HMW screen	Method Builder	3/28/2008	
🗄 NTA kinetics	Method Builder	3/28/2008	
Single-cycle kinetics	Method Builder	3/28/2008	

↓

Single-cycle Kinetics を選択した後、Open...をクリックします。

Method Builder の Main ダイアログが表示されます。Overview 画面にはメソッド全体の設 定項目が表示されます。以下変更項目について記載します。詳細は 6 章を参照してください。

↓

 \downarrow

General Settings をクリックします。

🐱 Method Builder - Main	X
Overview 1 t start 2 General Settings Data collection rate Detection Sample compartment temperature 10 Hz Dual 25 Vary with analysis temperature	
Cycle Lypes Variable Settings Verification Miscellaneous settings Docentration unit Position Position A B C	
Setup Bun	
Help Save Save As Qiose	

1 Data Collection rate

10Hz を選択します。

2 Detection

検出モードを以下の3つ(Single, Dual, Multi)から選択します。

- **Single** 1, 2, 3, 4
- **Dual** 1,2、3,4、2-1、4-3

Multi 1,2,3,4、2-1,4-3、2-1,3-1,4-1

3 Sample compartment temperature

サンプルコンパートメントの温度(4~45℃)を設定します。

(4) Concentration unit

アッセイ全体を通して用いる濃度単位を選択します。

5 Buffer settings

使用するランニング緩衝液名を入力します。

6 After run

チェックを入れておくと、全測定が終了した後に、センサー表面の温度が指定し た温度に自動変更されます。

設定後、Assay Steps をクリックします。

96 5. 相互作用測定

🐱 Method Builder -	Main	×
Overview General Settings Assay Steps Cycle Types Variable Sgttings Verification	New Startup [Startup] Startup 3 times as entered. Sample Sample [Sample] Sample 1 time as entered.	
Setup <u>A</u> un	Cycle Run List Assay step properties Base settings Name: Startup Purpose: Startup Connect to Startup Distribute	
	cycle type: Assay step preparations Temperature: 25 Buffer: A V Content of the second of the sec	
	Save Save As	lose

Startup を選択します。

Number of replicates

Times

ベースライン安定化のためのスタートアップの測定回 数を指定します。3回以上を推奨します。

↓

5. 相互作用測定 97

	ni.
method builder -	ann 🗠
Overvie <u>w</u>	
General Settings	Startup [Startun] Startun 3 times as entered.
Assay Steps	Sample Sample 1 time as entered.
Cycle <u>T</u> ypes	
Variable Settings	
	Wove Down
venncation	
·	
Setup <u>R</u> un	Cycle Run List
	Accurate properties
	Base settings Recurrence
	Name: Sample Repeat assay step within:
	Purpose: Sample O Every 1 🔅 cycle
	Connect to Sample O Distribute 1 💩 occurrences evenly
	Run assay step once first Run assay step once last
	Assay step preparations Number of replicates
	Temperature: 25 1 🔅 times
	Buffer: A V O As entered (1,2,3,1,2,3)
	Order (1,1,2,2,3,3)
	O Random
Help	Save Save As

Sample を選択します。

Number of replicates

Times 繰り返し測定回数を選択します。 \downarrow

Cycle Types をクリックします。

98 5. 相互作用測定

🀱 Method Builder - Main	×
Overview scle (type) General Settings Sample Assag Steps Delete Output Delete Variable Sgittings Commands Verification Exponentiation Setup Bun Settings for Sample 1 Type: Single cycle kinetics Setup Bun Setup Bun Setup Bun Setup Bun Egeneration 1 Concentrations per cycle: Setup Bun Setup Bun	Description of selected cycle type This cycle is used in sample steps, and (if used) control sample steps. Contains injection of sample and regeneration. The sample is of the type single-cycle kinetic, with recommended 5 concentrations, is number of injections in each cycle. Image: the type single-cycle kinetic, with recommended 5 Concentrations, is number of injections in each cycle. Image: type single-cycle kinetic, with recommended 5 Concentrations, is number of injections in each cycle. Image: type single-cycle kinetic, with recommended 5 Concentrations, is number of injections in each cycle. Image: type single-cycle kinetic, with recommended 5 Concentrations, is number of injections in each cycle. Image: type single-cycle kinetic, with recommended 5 Concentrations, is number of injections in each cycle. Image: type single-cycle kinetic, with recommended 5 Contact time (s) Image: type single-cycle kinetic, with recommended 5 Image: type sing
Help Save	

Sample をクリックします。

Туре	Single cycle kinetics を選択します。
Concentrations per cycle	アナライトの濃度数を選択します。最大 5 濃度です。
contact time	アナライト添加時間を入力します(s)。
Dissociation time	最終添加するアナライト解離時間を入力します(s)。
Flow rate	流速(µl/min)。通常、30 µl/min。
Flow path	Both または Multi を選択します。
Extra wash after injection with:	チェックを入れると指定溶液でアナライト添加後に流
	路内を洗浄します。センサーチップ表面には流れません。
Stabilization period	チェックを入れると指定した解離時間後に、指定した
	時間ベースライン安定化のための待機時間を設定する
	ことができます。

なお、再生しない場合には、**Commands** タブをクリックして、**Regeneration** を選択後、 **Remove** をクリックして削除してください。

 \downarrow

🌆 Method Builder - Main		
Overview Overview Cycle types Sample Sample Startup Variable Sgtings Verification Regeneration Yerification Regeneration Setup Bun Setup Bun	Setting: for Sample 1 Type: Sample solution: Is variable Contact time: 60 pissociation time: 60 Flow pate: 30 Interview Predip Mix with: Fraction: 12 (2) of mix solution Stabilization period after mix: (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (3)	scription of selected cycle type is cycle is used in start up steps: witans injections sample and regeneration. the sample is of the type low sample consumption, not single cycle kinetics, to ve time during start up procedures. The normal sample cycle could be used a start up cycle also. Method Variables Evaluation Variables Set property as variable Solution Contact time (s) Dissociation time (s) Flow rate (µL/min)
Help Save SaveAs		

Startup をクリックします。ダミーランを設定します。

Туре	Low Sample consumption が選択されています。
contact time	60 (s)と入力されています。変更の必要はありません。
Dissociation time	60 (s)と入力されています。変更の必要はありません。
Flow rate	30 µl/min
Flow path	Both または Multi が選択されています。

なお、再生しない場合には、**Commands** タブをクリックして、**Regeneration** を選択後、 **Remove** をクリックして削除してください。

 \downarrow

Variable Settings をクリックします。

🐻 Method Builder - A	Main	
Overview Querview Querview	Asin Assay steps Sample Define variable handling for each Assay Step Define all values at run time. Define all values in method Define some values in method and rth at run time. Values for these variables will be defined at run time. Sample Solution	
	Save SaveAs	ose

各ステップの変数をどの時点で入力するのか、画面右上の3項目から選択します。

Define all values at run time

測定開始直前に入力するモードです。

Define all values in Method

現画面上で入力するモードです。作成したメソッドを頻繁にテンプレートとして使用し、毎回変更がない場合は、ここで入力しておくと、測定 直前での情報入力が不要になります。

Define some values in Method and others at run time

幾つかの情報を現画面上で入力し、その他の情報は測定開始直前に入力 するモードです。

 \downarrow

Verification をクリックします。

🐻 Method Builder - J	Main	
<u>Overview</u>	Verification results The method has been verified and ear he used to set up a run	
<u>G</u> eneral Settings	nie menoù nas been venneù and can be useu lo serup a run.	
Assay Steps		
Cycle <u>T</u> ypes		
Variable S <u>e</u> ttings		
Verification		
·		
Color Day		
Setup <u>H</u> un		
	<u>s</u>	
	Curren Cruze A	Class
Teh	Zare Jarego	LIUSE

メソッドの設定に不備が無ければ**"The Method has been verified and can be used to set up a run.**"と表示されます。間違いがある場合は該当部分が表示されるので、指示に従って修正します。確認後、Setup Run をクリックします。

	\downarrow	
🔤 Method Builder	- Detection	
Detection <u>F</u> low path: 2-1	v	
Help	< <u>B</u> ack <u>N</u> ext>	<u><u>C</u>lose</u>

適切な Flow path を選択し、Next >をクリックします。

 \downarrow

Startup、Sample をそれぞれクリックし、テーブルにサンプル情報を入力します。

T	Met	hod Builder - Vari	ables						
	Starti Samp	steps up le			_				
	Variat	le values for Assay Ste	p Sample		Especie 1				
		Sample solution	Fonc (1) (nM)	Conc (2) (pM)	Sample 1 Conc (3) (pM)	Fonc (4) (pM)	Conc (5) (pM)	MW (Da)	
	1	antigen	0	0	0	0	0	11500	
	2	antigen	0	0	0	0	0	11500	
	3	antigen	1.063	2.125	4.25	8.5	17	11500	
	4								
	5								
	6	_							
	*								
C	He	Ip Import					< <u>B</u> ack	<u>N</u> ext>	<u>C</u> lose

Sample1

Sample Solution	アナライトの名称
Conc (nM)	アナライト濃度
	<u>Conc (1)→Conc (5)の順番で低濃度から順番に入</u>
	力してください
MW(Da)	アナライトの分子量

サンプル測定前にアナライトゼロ濃度のサイクルを2回以上実施してください。

入力後、Next >をクリックします。

 \downarrow

ycle	Assay step name	Sample 1 Solution	Sample 1 MW (Da)	Sample 1 Conc (1) (nM)	Sample 1 Conc (2
	Startup	buffer			
	Startup	buffer			
;	Startup	buffer			
	Sample	antigen	11500	0	0
;	Sample	antigen	11500	0	0
;	Sample	antigen	11500	1.063	2.125

測定サイクルリストが表示されます。

Next >をクリックします。

	\downarrow
📠 Method Builder - System Prep	arations 🛛 🔀
Erime before run Normalize detector	
Temperature settings Analysis temperature: Sample compartment temperature:	25 (°C) 25 (°C)
	< <u>Back</u> <u>N</u> ext> <u>C</u> lose

測定を始める前に、Prime および Normalize をおこなう場合にはチェックを入れてください。

Temperature settings

Analysis temperature	25°C
Sample compartment temperature	25°C

入力後、Next >をクリックします。

🐱 Method Builder - Rack Positions						
Sample and Reagent Rack 1	Position	Yolume (µl)	Content	Туре	Sample 1 Conc (nM)	Sample 1 MW (Da)
15 $()$ $()$ $()$	R1 A1	118	antigen	Sample	0	11500
	R1 A2	118	antigen	Sample	0	11500
	R1 A3	118	antigen	Sample	0	11500
	R1 A4	118	antigen	Sample	0	11500
	R1 A5	118	antigen	Sample	0	11500
	R1 A6	118	antigen	Sample	0	11500
	R1 A7	118	antigen	Sample	0	11500
11 <mark>0 0 0°()()'</mark> ()	R1 A8	118	antigen	Sample	0	11500
	R1 A9	118	antigen	Sample	0	11500
	R1 A10	118	antigen	Sample	0	11500
	R1 A11	118	antigen	Sample	1.063	11500
$1^{\circ} \cup \cup_{i} \cap \cap \subset$	R1 A12	118	antigen	Sample	2.125	11500
	R1 A13	118	antigen	Sample	4.25	11500
	R1 A14	118	antigen	Sample	8.5	11500
	R1 A15	118	antigen	Sample	17	11500
	R1 B1	154	buffer	Startup		
$\begin{array}{c c} \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet \\ \hline \bullet \\ \hline \bullet & \bullet \\ \hline \bullet \\ \hline \bullet \\ \hline \bullet & \bullet \\ \hline \bullet \\ \hline \bullet \\ \hline \bullet \\$						
<u>H</u> elp <u>M</u> enu ▼ <u>Ej</u> ect Rack	,			C	< <u>B</u> ack <u>N</u> ext>	<u>C</u> lose

右側の表でサンプルの位置とサンプル量(µl)を確認します。表中のサンプルをクリックす るとそれに対応するラック上の位置が強調表示されます。位置と容量を確認しながらバイ アルおよびサンプルをラックにセットします。

補足 5-20. サンプル位置の変更

サンプル位置は、上記画面に切り替わった時点で自動的に設定されます。あらかじめサン プル位置が決まっているプレートを使用する場合は、画面左下の Menu → Export Positions...を実行し、サンプル位置をタブ区切りのテキストファイルとして保存します。必 要事項を変更した後ファイルを保存し、Menu → Simple Position Import...でそのファイル を読み込むと、サンプル位置が変更されます。
補足 5-21. 同一バイアルからのサンプリング設定

サンプル位置は、同一サンプルであっても、添加回数分、分注して配置されるように組ま れています(例えば同一の Control Sample であっても、R1A1 から R1A12 に 12 バイアルに 分けてセットするように指示されます)。同一サンプルを同バイアルから使用したい場合は プーリング機能を利用します。

Reagent Rack 2	Position	Volume (µl)	Content	Туре	Sample
36 7007 7007	R1 A1	148	Negative control	Control sample	40
	R1 A2	148	Negative control	Control sample	40
	R1 A3	148	Negative control	Control sample	40
) R1 A4	148	Negative control	Control sample	40
	R1 A5	148	Negative control	Control sample	40
$\bigcirc \bigcirc $	R1 A6	148	Negative control	Control sample	40
) R1 A7	148	Positive control	Control sample	40
	G R1 A8	148	Positive control	Control sample	40
96 Deep Well Microplate	R1 A9	148	Positive control	Control sample	40
	R1 A10	148	Positive control	Control sample	40
• • • • • • • •	R1 A11	148	Positive control	Control sample	40
	R1 A12	148	Positive control	Control sample	40
-"\	R1 B1	148	Analyte A	Sample	0
	R1 B2	148	Analyte A	Sample	160
	R1 B3	148	Analyte A	Sample	10
	R1 B4	148	Analyte A	Sample	20
	R1 B5	148	Analyte A	Sample	40
	R1 B6	148	Analyte A	Sample	80
	R1 87	148	Analyte A	Sample	160
	R1 B8	148	Analyte A	Sample	0
	R1 B9	148	Analyte A	Sample	160
	R1 B10	148	Analyte A	Sample	10
	R1 B11	148	Analyte A	Sample	20
	R1 B12	148	Analyte A	Sample	40
	R1 C1	148	Analyte A	Sample	80
	R1 C2	148	Analyte A	Sample	160
ABCDEFG	H 01.00	140	Aposluto A	Careada	0

Menu から Automatic Positioning...を選択します。

Region	Color		Orientat	ion	Anchor		Rack		Vial Si	fe .	Pool	ling	First Sort By		Move Up
Control sample	Cyan	-	Column	-	Bottom left	-	Sample	•	Small	-	Auto	-	Content - Ascending	• P	
Sample	DarkBlue	-	Column	-	Bottom left	-	Sample	-	Small	-	Auto	-	Content - Ascending	• D	Move Dov
Startup	Crimson	-	Column	-	Bottom left	-	Sample	•	Small	-	Auto	-	content - Ascending	- P	
Wash	Yellow	-	Column	-	Bottom left	-	Reagent	-	Large	1-	Auto	-	Content - Ascending	- P	
Solvent correction (buffer A)	Blue	-	Column	-	Bottom left	-	Reagent	-	Small	X	Auto	1	Content - Ascending	• P	

↓

ここで、すべてのサンプルと試薬に関する配置を設定することができます。

"Pooling"の項目は、通常、Auto になっています。

同一バイアルからサンプリングしたいサンプル、試薬の種類について、"Pooling"のプルダ ウンメニューから Yes を選択し、ダイアログ右下の OK をクリックします。

なお、Automatic Positioning ダイアログでは色やバイアルのサイズの設定もできるので、 これらも必要に応じて適宜設定を変更してください。 Eject Rack をクリックして、Rack tray port を開きます。

ラックトレイを奥まで挿入し、OK をクリックします。Eject Rack Tray ダイアログが閉じた後、Rack Positions ダイアログ右下の Next >をクリックします。

Ţ

 \downarrow

🌆 Method Builder - F	repare f	Run Prota	col				
Tahoma	• 10	- B	ΙŪ				
Prepare Run Prof Make sure the corri- Make sure all samp Positions setup. (V Place the buffer(s) i Notel Standby after Make sure there is If necessary, empty	ocol les & rea als shou on the left run will u fresh wat the was	or chip is (agents are Id be seal t hand tra: ise buffer er in the v te bottle b	docked. Ioaded i ed with r y and ins A. vater bot efore sta	in the rack and ubber caps an sert the correct tle on the right art of the run.	microplate d microplate tubing(s), s hand tray.	according to th with adhesive see below.	ie Rack foil.)
Estimated run time: 1 h 3 Estimated buffer consum	39 min (exc	cluding cond	litional stat	ements, temperati	ure changes ar	nd standby flow)	
A Buffer A At least 100 ml plus 65 ml/day for standby after run	B	Not in use		Not in u	se	Not in use	9
<u>H</u> elp <u>M</u> en	u 🔻				< <u>B</u> ack	<u>S</u> tart	Close

基本的な注意事項、測定時間、必要なランニング緩衝液量が表示されます。 Start をクリックします。

設定したメソッドをテンプレートとして保存するかどうか、メッセージが表示されます。 保存の場合は、Save as で Methods and Templates フォルダまたは Bia Users の各自のフォ ルダに保存します。保存しない場合は、Don't Save を選択します。

↓

 $[\]downarrow$

Save in:に測定結果の保存先を設定し、File name にファイル名を入力して、Save すると測 定がスタートします。

終了後、装置は Standby flow 状態になります。

 \downarrow

測定データは入力したファイル名で自動保存され、Biacore T200 Evaluation Software が自動 的に起動して、各サイクルの測定結果が重ね書き表示されます。 108 5. 相互作用測定

補足 5-22. プログラムの緊急停止					
Run → Stop Runをクリ	ックします。				
	Biacore T200				
	This will stop the run				
ボックス中の Stop Run をクリックします。					
	\downarrow				
	Run Stopped				
	Finishing current cycle, please wait Abort cycle by [Ctrl]+[Break]				
夫行中の測定サイクルが終」するよど付機し終」しよす。					
上記ウインドウが開いている状態で、ただちにプログラムを終了したい場合には、画面の					
表示に従い、キーボードの	[Ctrl]キーと[Break]キーを同時に押し	ます。			
終了した時点までのデータが Biacore T200 Evaluation Software に移行します。					

5-2-2. カーブフィッティングによる解析

メソッドを用いた測定プログラム終了後、Evaluation ソフトウェアは自動的に立ち上がり、 自動保存された取得データが開かれます。

補足 5-23. サンプル情報の変更

サンプル濃度および濃度単位、サンプルの名称など入力ミスがあった場合は、解析を実行 する前に、Keyword table…で変更します。Tools… → Keyword Table…をクリックします。 リガンド名の変更は、右下の Edit Chip Information をクリックして変更します。

1 France 2 France	5.00			
1 Data 2 Data	5.40		-	- Pacal ADTBase
2 Status		E		
	bde			and a second descent des
S. Siehe	bafe	1		All/Agreed
4 Lowert Las	e ha			and the second s
Compliants	an inspire	-0		Renare Caproid
6. Comili san	ik replice			promotion and and and and and and and and and an
7 Certral care	W \$10852	. 94	101.76	functe Capetal
6 Saule	A3		297.74	
1 Langle	4,5	4.25	207.74	
12 Laule	A,1	125	297.74	
11 Targle	A.1	- 25	207.78	
12 Legie	A.J	14	297.74	Provide State
12 Sanale	A,5	100	397.74	Concernant line
14 Lands	A.3	200	297.74	- ×
VS. Sarajo	A.I		397.74	
10 Legit	8.7		228-25	
17 Saule	10	4.25	328.25	
14 Largie	1.1	125	328.21	
181aulo	8,3	- 25	328-25	
20 Legit	8,5	34	228.25	
21 Satula	10	100	328.75	
22 Largie	10	200	228.21	
25 3 angle	8,3		228-25	
24 Comdisian	de inspéré			
7 Carto and	in regime			
35 Carity care	de \$1080	80	221.76	
27 Largie	0.5		388.25	
20 Legite	0.0	4.25	348.31	1.4 De Manadan
28 Langle	0.3	125	388.27	*
then 1				Carter Contract

Toolbar の Minetics / Affinity ▼ をクリック後、 Margare bound をクリックします。

同一サンプル名のセンサーグラムが重ね書き表示されます。

複数のサンプルについて同時測定している場合は、Sample:右側の ▼をクリックすると、別のサンプルデータに移行できます。

ゼロ濃度のブランクサイクルを複数回測定している場合、センサーグラム下の Show average blank (s) にチェックを入れると、平均したセンサーグラムが表示されます。

エアーの混入などの理由で、解析データから削除したいセンサーグラムがある場合は、そのセンサーグラムについて、テーブル中の Include カラムのチェックを外します。

自動的にテーブル下のチャートから、チェックを外したセンサーグラムは消えます。 Next >をクリックします。

日本語取扱説明書

濃度 0 のセンサーグラムが、ブランクとして全センサーグラムから差し引かれます。 Kinetics >をクリックします。

補足 5-25. センサーグラムの部分的削除

エアーの混入や添加開始・終了点のノイズなど、解析データの中から一部削除したい領域 がある場合には、マウスの左ボタンをドラッグし該当の領域を拡大したのち、マウスの右 ボタンをドラッグして削除する領域を選択します。拡大図を解除する場合は、センサーグ ラムを含まない余白をダブルクリックすると、一つ前の縮小画面に戻ります。

 \downarrow

114 5. 相互作用測定

Model:に、フィッティングに採用する反応モデル式を選択します。 をクリックすると、 すべての反応モデルが表示されます。反応モデルが不明な場合は、1:1 Binding を選択します。

Add Fit-	
Model:	• 1:1 Binding 😪
	1:1 Binding Bindent Applies
	Heterogeneous Analyte
	 Heterogeneous Ligand
RU	Two State Reaction
1 7 -	

選択後、Fit をクリックします。

補足 5-26. 反応モデル

リガンドを B、アナライトを A とします。

1:1 Binding A + B ⇔ AB リガンドとアナライトが 1 分子同士で結合するもっとも単純な反応モデル。

Bivalent Analyte $A + B \Leftrightarrow AB, AB + B \Leftrightarrow AB2$

アナライトが2価もしくはホモ2量体の反応モデル。AB 複合体形成後、リガンド B が2次的に結合する反応。

Heterogeneous Analyte A1 + B ⇔ A1B, A2 + B ⇔ A2B

競合反応。リガンド上の1種類の結合部位を2種類のアナライトが競合する反応。

Heterogeneous Ligand A + B1 \Leftrightarrow AB1 , A + B2 \Leftrightarrow AB2

アナライトに対して親和性の異なる 2 つの結合部位を持つリガンドにアナライト が並行して結合する反応モデル。

Two state Reaction $A + B \Leftrightarrow AB \Leftrightarrow AB^*$

リガンドとアナライトの 1 分子同士の結合であるが、複合体形成後コンフォメー ション変化を起こす反応モデル。

116 5. 相互作用測定

黒色のセンサーグラムは、フィッティングにより得られたフィッティングカーブです。 1:1 binding で解析した場合には、Quality Control テーブルが表示され、解析結果の評価が表示されます。

補足 5-27. 解析結果の Quality Control 5項目の品質評価結果が、ステータスマークで表示されます。 ステータスマーク **⊘** クオリティーアセスメントにパスしています。 クオリティーアセスメントの許容限界に近いです。 8 クオリティーアセスメントにパスしていません。 Ð ニュートラルまたは各自で確認します。 品質評価基準 Quality Control Report Residuals Parameters Kinetic constants are within instrument specifications. 2 Kinetic constants appear to be uniquely determined. 3 No significant bulk contributions (RI) found. 4 Check that sensorgrams have sufficient curvature. (5) Examine the residual plot. Pay attention to systematic and non-random deviations. ①速度定数がシステムのスペック範囲内かどうかチェックしています。

スペックに近い場合や、超えている場合には、 😢 が付きます。

スペック範囲 $k_a = 10^3 \sim 10^7$ (1/Ms)、 $k_d = 10^{-5} \sim 0.5$ (1/s)

②各パラメータが独立して算出されているかどうかチェックしています。

k_a、k_dおよび R_{max}について解析結果に与える、パラメータ間の相関性を確認しています。マストランスポートリミテーション下で測定した結果は、k_a、k_dに相関性が見られます。

③溶液効果の値(RI)の妥当性をチェックしています。

リファレンスセルおよびアナライトのゼロ濃度を差し引いている場合には、RI は 限りなくゼロとなりますが、結合・解離速度が速くセンサーグラムが箱型の場合 には、RI の値が大きく算出され、解析結果へ影響を与えます。

④センサーグラムはカーブを描いているかどうか、確認してください。

センサーグラムの結合・解離領域が直線的な場合、得られる解析結果の信頼性は 低くなります。

⑤フィッティングカーブに対して測定プロットがランダムに分散しているかどうか、確認 してください。

Residuals タブをクリックして、残差プロットを確認します。Y 軸のゼロ近傍(目 安:±1~2 RU)で、ランダムにプロットが分散している場合は良好なフィッティン グと判断できます。緑色のガイドライン内にほとんどのプロットが入っているこ とを確認してください。

Report タブをクリックすると、算出された各種パラメータが表示されています。

<i>k</i> a (1/Ms)	結合速度定数
<i>k</i> _d (1/s)	解離速度定数
K_D (M)	解離定数
R _{max} (RU)	アナライトの結合最大量
RI (RU)	溶液効果(bulk effect)
Chi ² (RU ²)	カイ二乗
U-value	U-バリュー(既存の 1:1 Binding モデル使用時のみ)

Finish をクリックします。

上記解析結果は、画面左端の Evaluation Explorer 中のフォルダに追加されます。ファイル 名にはサンプル名が自動的に入力されます。

引き続き、同時に測定した別のサンプルについて解析する場合は、Toolbarの <mark>∧ Kinetics / Affinity ▼</mark>をクリックします。

補足 5-28. フィッティング結果の評価

フィッティングが良好な場合、センサーグラムとフィッティングによって得られたフィッ ティングカーブがほぼ重なります。センサーグラムの傾きが大きく異なる場合、フィッテ ィングは良好ではないと判断します。また、解析結果の RI 値が O (RU) に近いか確認しま す。

統計学的には、以下の各項目を確認します。

Residual

Residuals タブをクリックして、残差プロットを確認します。Y 軸のゼロ近傍(目 安:±1~2 RU)で、ランダムにプロットが分散している場合は良好なフィッティン グと判断できます。緑色のガイドライン内にほとんどのプロットが入っているこ とを確認してください。

Chi²

測定データとフィッティングカーブ間の差を示します。良好なフィッティングで は、シグナルノイズの平均平方値に一致します。

U-value

解析値が信頼できるか否かを判断する値です。15以下であれば問題ありません。 25以上になると、算出された値の信頼性は低くなります。

SE (Standard error)

各パラメータについて SE (標準誤差)が表示されます。各パラメータの解析結果 に対して、SE の値が 10%以下であれば問題ありません。

Check Kinetic Data

解析ウインドウ右上の Tools にあります。マストランスポートリミテーションの影 の強さを確認します。

ウインドウ上の Modification factor M のスライダーを 1 から 10 まで移動します。 この際、解析結果の黒色のセンサーグラムに対して、赤色と青色のセンサーグラ

ムの変化を確認します。赤色と青色のセンサーグラムは、黒色のセンサーグラムの変化を確認します。赤色と青色のセンサーグラムの k_a 、 k_d 値を factor M (1~10) で割った場合と掛けた場合に得られるセンサーグラムです。変化が小さい場合はマストランスポートリミテーションの影響が強いと判断します。

フィッティングが良好ではない要因

①フィッティングに採用したモデルが異なっている

②箱型のセンサーグラムである

③経時的なリガンドの活性低下が考えられる

④再生が不十分である

⑤アナライト濃度の調製ミスが考えられる 等

①が要因と考えられる場合は、再度妥当な反応モデルを選択し解析してください。

②が要因の場合、解析結果の RI がセンサーグラムのレスポンスの大半を占める値になることがあります。これは、結合解離領域の急激なレスポンスの変動を RI とみなしてしまうからです。この場合は、RI=0 (Constant)として再解析してください。

複数濃度のセンサーグラムから 1 つの定数を算出する解析方法では、すべての濃度のセン サーグラムにおいて *ka*, *kd*, Rmaxが同一のパラメータであることが前提となります。しかし、 上記③~⑤の実験状況では、各濃度のセンサーグラムにおいて、これらのパラメータは必 ずしも一致しません。

例えば、Rmaxは、リガンドに対するアナライトの最大結合量(RU)であり、理想的な実験系では、連続して同一セルを使用している限り、どの濃度のセンサーグラムに対しても同一値となります。ところが、リガンドの再生が不十分な場合や、再生操作によりリガンドの活性がサイクルごとに低下している場合には、Rmaxはサイクルごとに低下します。フィッティングが良好でない要因が、測定結果から明らかに Rmaxにある場合は、Rmaxが同一パラメータであることを解除し再解析してください。

解析したすべての結果は、履歴として、Current Fits ボックスに残ります。 前の解析結果を見る場合は、Current Fits ボックスの目的の反応モデルをクリックすると結 果が表示されます。終了後、Finish をクリックします。

補足 5-30. 解析履歴からの結果の消去					
解析結果を履歴から消去する場合は、Current Fits ボックス中の目的のデータを選択します。					
Current Fits					
1: 1:1 Binding Description:					
Delete Tools					
Delete をクリックします。					
\downarrow					
Biacore T100 Evaluation X Image: Are you sure you want to delete this fit? OK Cancel					
確認ダイアログが表示されます。					
消去する場合は OK をクリックします。					
\downarrow					
Current Fits					
1: Two State Reaction Description:					
Delete Tools					
解析結果が消去されます。					

6. メソッドによるプログラムの作成

ウィザードで作成するプログラムには、リファレンスの選択や再生溶液の添加回数などに 制約があります。そこで、ウィザードでは対応できない複雑なプログラムを使用したい場 合は、メソッドビルダーを使用してメソッドを作成します。作成時には、あらかじめ実験 目的に応じたウィザードテンプレートから望みに近いプログラムを作成して保存したファ イルをメソッドビルダーで編集すると、効率も良く間違いが減ります。

メソッドの構成

メソッドビルダーの重要な設定項目は"Assay Steps"と"Cycle types"です。

始めに、Assay Steps で測定全体のアウトラインを設定します。一つもしくは複数の測定ス テップを設定します。それぞれの測定ステップは Startup、Samples、Control Samples などの 測定目的別で設定します。

Cycle types では、測定ステップ別に詳細なプログラム(温度、流速、試料の添加順序など)を設定します。

6-1. ウィザードで作成保存したプログラムの呼び出し

実験目的別に既存のテンプレートがあります。既存のテンプレートがない場合には、実験 目的に応じたウィザードで実験条件に近いプログラムを作成・保存しておきます。その後、 以下の操作に従ってメソッドを作成します。

Toolbar の Run Method アイコン (言,) または Menu bar の Run → Method... δc リックします。

Den/New Method		
Look in: 📄 Methods And Ter	nplates	E E
Name	Туре	Modified
Biacore Methods 070814		
070913 080314		
0804		
0003		
	Show importable wizard templates	New Open Cancel

Show importable wizard templates に チェック を入れます。

Copen/New Method	plates		X X
Name	Туре	Modified	
oracute methods oracute methods oracute methods oracute methods oracute oracu	Method Builder Method Builder	4/2/2008 9/13/2007	
Help Browse	Show importable wizard templates	<u>N</u> ew <u>O</u> pen	Cancel

l

Methods and Templates フォルダ内に保存されているウィザードファイルが表示されます。 それ以外のフォルダに保存したファイルを呼び出す場合は、Browse…を利用します。目的 のファイルを選択し、Open…をクリックします。 126 6. メソッドによるプログラムの作成

🐱 Method Builder - M	lain					
Overvie <u>w</u>	Assay steps	:				General settings
<u>G</u> eneral Settings Assa <u>y</u> Steps	Startup [Startup]		LMW kinetics	3 times as entered.		Loncentration unit = nM Data collection rate = 10Hz Sample compartment temperature = 25 °C Detection = Dual
Cycle <u>T</u> ypes	Sample [Sample]		LMW kinetics	1 time as entered.		Settings for assay step "Startup"
Variable Settings	t	Solvent correction [Solvent correction]	Solvent correction	1 time as entered.	Before / after / every	Temperature = 25 °C Buffer = A
	t	Control sample [Control sample]	LMW kinetics	1 time as entered.	Before / after / every	Settings for cycle type "LMW kinetics"
Setup <u>B</u> un						 Sample 1: varies by cycle, 60s, 600s Carry-over control 1: Report points
	<				>	Expand All Collapse All
	<u>S</u> ave	Save <u>A</u> s				

ウィザードで入力されていた情報が自動的にメソッドの形式に変換されます。ファイルを 開いた直後は、メソッドビルダーの **Overview** 画面が表示されています。

6-2. メソッドの編集

画面左列に設定ボタンが存在します。General Settings から Verification までの上から 5 つ のボタンでメソッドを作成します。

Overview	測定内容の表示
General Settings	システム初期条件の設定

Assay Steps	測定全体のアウトラインの作成
Cycle Types	測定ステップごとの詳細なプログラムの設定
Variable Settings	変数入力方法の設定
Verification	作成メソッドの確認
	\downarrow

Overview をクリックします。

🔤 Method Builder - Ma	ain					
Overvie <u>w</u>	Assay steps					General settings
						Concentration unit = nM
<u>G</u> eneral Settings	Startup					Data collection rate = 10Hz Sample compartment temperature = 25 °C
Assau Stops	[Startup]		LMW kinetics	3 times as entered.	/	Detection = Dual
H2295 2(6b2	Fample			Ŧ		
Cycle Types	[Sample]		LMW kinetics	1 time as entered.		Settings for assay step "Startup"
	Ferrit 1					Temperature = 25 °C
Variable S <u>e</u> ttings		Solvent correction				Buffer = A
	L C	[Solvent correction]	Solvent correction	1 time as entered.	Before / after / every	
Ventication					\longrightarrow	
	t	Control sample	I MW kinetics	1 time as entered		Settings for cycle type "LMW kinetics"
· · · · · · · · · · · · · · · · · · ·	_	[control sample]	LINW NINGUES	T time as entered.		⊞ Sample 1: varies by cycle, 60s, 600s
						Carry-over control 1:
Setup <u>H</u> un						Report points
	<				>	Expand All Collapse All
	Save	Save <u>A</u> s				

各項目をクリックすると、右側の画面で測定ステップの詳細を確認することができます。

 \downarrow

General settings をクリックします。

128 6. メソッドによるプログラムの作成

🌆 Method Builder - M	lain		
Overview General Settings Assay Steps Cycle Types Variable Settings	Data collection rate 10 V Hz Hz Concentration unit	Detection Sample compartment temperature Dual 25 Single Vary with analysis temperature Jual 5 Buffer settings Buffer settings	
Verification	nM 💌	Position Name	
Setup <u>R</u> un	After run Specify analysis ten	A PBS, 5% DMSO B C D emperature after run:	
	Save Save As	<u>"</u>	

General settings では 6 項目を設定します。

1 Data Collection rate

1Hz もしくは 10Hz を選択します。	
反応速度定数、熱力学パラメータ算出の場合	10Hz
それ以外の実験目的の場合	1Hz

2 Detection

流したいフローセルに対応した検出モードを以下の3つ(Single, Dual, Multi)から 選択します。

Single	1、2、3、4
Dual	1,2、3,4、2-1、4-3
Multi	1,2,3,4、2-1,4-3、2-1,3-1,4-1

3 Sample compartment temperature

サンプルコンパートメントの温度(4~45℃)を設定します。サンプルコンパート メントの温度は、サンプルの安定性を考慮し、10℃程度に設定することもありま すが、DMSO を含むサンプルの場合は、低温で析出することがあるので注意が必要 です。

Vary with analysis temperature

Analysis temperature と同じ温度に設定したい場合に チェックを入れます。

(4) Concentration unit

アッセイ全体を通して用いる濃度単位を選択します。

5 Buffer settings

使用するランニング緩衝液名を入力しておくと、記録として残すことができます。

6 After run

この項目にチェックを入れておくと、全測定が終了した後に、センサー表面の温 度が指定した温度に自動変更されます。

 \downarrow

130 6. メソッドによるプログラムの作成

Assay steps をクリックします	0
----------------------	---

🔤 Method Builder - I	Main	×
Overvie <u>w</u>	New Startup Startup Startup Startup LMW kinetics 3 times as entered.	
Assay Steps	Sample [Sample] LMW kinetics 1 time as entered.	
Variable S <u>e</u> ttings	Move Up Solvent correction Solvent correction 1 time as entered. Before / after / every 20 cycles.	
Verification	Control sample [Control sample] LMW kinetics 1 time as entered. Before / after / every 10 cycles.	
Setup <u>R</u> un	Cycle Run List	
2	Assay step properties Base settings Name: Startup Recurrence	
	Purpose: Startup Every 1 © cycle Connect to cycle tune; LMW kinetics O Distribute 1 © occurrences evenly	
	Assay step preparations	
4	Temperature: 25 Buffer: A V OAs entered (1,2,3,1,2,3)	
	Order (1,1,2,2,3,3) Random	
	Save Save As	Close

Assay steps では 5 つの設定項目があります。アッセイを正しく構築するためには、①、② および③の理解が必須です。

編集したい測定ステップをクリックし、各項目を設定します。

① Assay Steps

測定ステップの作成と各測定ステップの配置を変更します。
測定ステップを追加する場合は New (小 New) から作成できます。
新規で作成する測定ステップは、後述する Purpose と Cycle type の関連づけが必
要です。詳細は、補足 6-3. を参照してください。
各測定ステップの配置は Move Up (1 Move Up) および Move Down
(🦶 Move Down) にて調整します。測定ステップを削除したい場合には、該
当の測定サイクルを選択後、Delete (<mark>/ Delete</mark>) をクリックします。

② Base settings

Name

測定ステップの名称を入力します。最初は Purpose の 名称と同一ですが、変更することも可能です。 各測定ステップを"何のために"実行するか設定します。 Evaluationsoftware において各測定ステップを適切に認 識するために必要かつ重要な項目です。以下の 7 種類 があります。

Conditioning	Startup
Solvent correction	Calibration
Sample	Control Sample
Undefined	

Connect to cycle type

Purpose

Cycle types 画面で定義したサイクルタイプを関連づけ ます。サイクルタイプはプルダウンメニューに一覧で 表示されます。サイクルタイプに関しては、後述する 該当項目を参照してください。ウィザードで作成した プログラムを使用する場合は、適切に関連づけられて いるので、新規のアッセイステップを追加しない限り、 特に設定を変更する必要はありません。

③ Recurrence

Calibration、Control Sample、Solvent correction などをサンプル測定ステップ内で定 期的に繰り返し実行するための設定項目です。通常、ウィザードで作成したプロ グラムを読み込んだ場合はすでに設定されています。必要があれば測定頻度の変 更や、サンプル測定ステップの最初と最後に測定する項目を追加できます。詳細 は、補足 6-1. を参照してください。

④ Assay step preparations

温度の入力し、ランニング緩衝液を選択します。ランニング緩衝液を 1 種類しか 使用しない場合は設定する必要はありません。(デフォルトでは、A が選択されて います)

5 Number of replicates

同一サンプル(コントロールサンプルや検量線用試薬も同じ)について繰り返し 測定回数を入力します。合わせて、測定順序を As Entered、Order および Random の中から選択します。 132 6. メソッドによるプログラムの作成

, , , , , , , , , , , , , , ,	Run assay step once first (2)	矢印が向かっている先のステップが開始さ
れる直前に実施)	および Run assay step once firs	st(矢印が向かっている先のステップが終
了した後に実施)	こチェックを入れます。	
	ecurrence	
	Repeat assay step within: Thermo	1
	 Every 15 	; cycle
	🔘 Distribute 🔰 🔮	occurrences evenly
	🔲 Run assay step once first	Run assay step once last
間隔の確認に関し	ては、 Cycle Run List 機能を使い	います。使用方法は、補足 6-2. を参照して
ください。		
なお、測定ステッ	フが複数存在する場合は、上た	いら並んだ順に実行されます。必要に応じ
て、 Move Up お。	び Move Down を用いて並び替	えます。
	Startup 1 [Startup] Thermodynamics	5 times as entered.
	+	
	Thermo 1 [Sample] Thermodynamics	1 time as entered.
	Thermo 1 [Sample] Thermodynamics Solvent correction 1 [Conditioning] Solvent correction	1 time as entered. 1 time as entered. Every 15 cycles.
	Thermo 1 Thermodynamics [Sample] Thermodynamics Solvent correction 1 Image: Conditioning in the solution of th	1 time as entered. 1 time as entered. Every 15 cycles. 1 time as entered. Every 15 cycles.
上に示した例でに	Thermo 1 [Sample] Thermodynamics	1 time as entered. 1 time as entered. Every 15 cycles. 1 time as entered. Every 15 cycles. 場合、以下のように測定が実行されます。
上に示した例では	Thermo 1 [Sample] Thermodynamics	1 time as entered. 1 time as entered. Every 15 cycles. 1 time as entered. Every 15 cycles. 場合、以下のように測定が実行されます。
上に示した例では	Thermo 1 [Sample] Thermodynamics	1 time as entered. 1 time as entered. Every 15 cycles. 1 time as entered. Every 15 cycles. 場合、以下のように測定が実行されます。
上に示した例では	Thermo 1 [Sample] Thermodynamics	1 time as entered. 1 time as entered. Every 15 cycles. 1 time as entered. Every 15 cycles. 場合、以下のように測定が実行されます。
上に示した例では	Thermo 1 [Sample] Thermodynamics Thermodynamics Solvent correction 1 [Conditioning] Solvent correction Control sample 1 [Control sample] Thermodynamics アナライトが 30 サンプルの Startup 1 Solvent correction 1 Control Sample 1 Thermo 1 1 か	1 time as entered. 1 time as entered. Every 15 cycles. 1 time as entered. Every 15 cycles. 場合、以下のように測定が実行されます。
上に示した例では	Thermo 1 [Sample] Thermodynamics (Solvent correction 1 [Conditioning] Solvent correction (Control sample 1 [Control sample] Thermodynamics アナライトが 30 サンプルの Startup 1 Solvent correction 1 Control Sample 1 Solvent correction 1 Solvent correction 1 Solvent correction 1 Solvent correction 1	<u>1 time as entered.</u> <u>1 time as entered. Every 15 cycles.</u> <u>1 time as entered. Every 15 cycles.</u> 場合、以下のように測定が実行されます。 ら 15 番目までのアナライト
上に示した例では	Thermo 1 [Sample] Thermodynamics t [Conditioning] Solvent correction 1 [Conditioning] Solvent correction t [Control sample 1 [Control sample] Thermodynamics アナライトが 30 サンプルの Startup 1 Solvent correction 1 Control Sample 1 Solvent correction 1 Control Sample 1 Control Sample 1 Control Sample 1	1 time as entered. 1 time as entered. Every 15 cycles. 1 time as entered. Every 15 cycles. 場合、以下のように測定が実行されます。

補足 6-2. サイクルの測定順序の確認と変更

サンプル測定ステップ内において、溶媒補正用曲線、コントロールサンプルなどはサンプ ル数に応じて複数回繰り返し実行します。繰り返し回数の設定は Recurrence および Number of replicates で設定します。実際にどの順序で溶媒補正用曲線、コントロールサン プルなどが実行されるか、アッセイステップを作成している際に Cycle Run List...で確認で きます。

溶媒補正用曲線、コントロールサンプルなどのステップに関して Recurrence および Number of replicates を望みの間隔になるように値などを入力し、Cycle Run List をクリッ クします。

				\downarrow			
_							
Cy	cle Run List Simulatio	n Tool					
E	ter the number of cycles yo	u plan to run for each assay	step in the left panel.	The list of cycles for th	ne run is displayed in the r	right panel.	
	Accou Etop Namo	# Euclos/Accou Etop	[Sycle	Accay step nam	e Accay sten nurnor	re Cycle tyne	
	Assay Step Marie	# Cycles/Assay Step	1	Startup	Startup	I MW/ kinetics	
12	Sample	1	1	Startup	Startup	LMW kinetics	
23	Solvent correction	1	2	Startup	Startup	LMW kinetics	
4	Control sample	0	3	Scarcup	Scarcup	Column America	
		<u>_</u>	4	Solvent correction	Solvent correction	Solvent correction	
			5	Control sample	Control sample	LMW kinetics	
			6	Control sample	Control sample	LMW kinetics	
			7	Sample	Sample	LMW kinetics	
			8	Sample	Sample	LMW kinetics	
			8	Sample	Sample	LMW kinetics	
			10	Sample	Sample	LMW kinetics	
			11	Sample	Sample	LMW kinetics	
			12	Sample	Sample	LMW kinetics	
			13	Sample	Sample	LMW kinetics	
			14	Solvent correction	Solvent correction	Solvent correction	
			15	Control sample	Control sample	I MW kinetics	
			15	Control cample	Control sample	LMW kinetics	~
			110	redition pampic	Concror Sample	CHAN RECORD	
	Help						Close
タステップタが耒・	示さわする	+ + Cvc	loc/Acc	av ston	1 タマ	゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚゚	カにおける測定サンプ
	10104		163/ 4330	ay step		() / / r	
	/ _		_				
ル数を人力します。	、例)Sta	rtup:1、 S	Sample	: 7、 Sol i	vent corı	rection :	1. Control Sample: 2
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , ,						
	Cycle Run List Simu	ilation Tool					
	Enter the number of cyc	des you plan to run for each ass	say step in the left panel.	The list of cycles for the	run is displayed in the right p	anel	
	A	and the final and the first state	Cuelo	Accounter name	Accounter purpose	Cuelo tuno	
	Assay Step n	ame # Lycles/Assay ste	ip Cycle	Startun	Startun II	W kinetics	
	2 Sample	7	2	Startup	Startup LI	1W kinetics	
	3 Solvent correct	on 1	3	Startup	Startup LN	1W kinetics	
	4 Control sample	2	4	Solvent correction	Solvent correction So	olvent correction	
			5	Control sample	Control sample LN	1W kinetics	
			6	Control sample	Control sample LM	4W kinetics	
			7	Sample	Sample LM	4W kinetics	
			8	Sample	Sample LM	4W kinetics	
			9	Sample	Sample LM	4W kinetics	
			10	Sample	Sample LN	4W kinetics	
			11	Sample	Sample LM	4W kinetics	
			12	Comple		dW kinatice	
			12	Sample	Sample LM	IW NIDOCS	
			13	Sample	Sample LN Sample LN	fW kinetics	
			12 13 14	Sample Solvent correction	Sample LN Sample LN Solvent correction So	W kinetics Went correction	
			12 13 14 15	Sample Solvent correction Control sample	Sample LN Sample LN Solvent correction So Control sample LN	1W kinetics olvent correction 1W kinetics	
			12 13 14 15 16	Sample Solvent correction Control sample Control sample	Sample LN Sample LN Solvent correction So Control sample LN Control sample LN	fW kinetics olvent correction fW kinetics fW kinetics	■

ウインドウ内の右側に測定サイクルの順番がリスト表示されます。望みの順序になるよう に、必要に応じて Recurrence および Number of replicates の設定を変更します。 Cycle types をクリックします。

🔤 Method Builder - M	ain		
Overview General Settings Assay Steps Cycle Lypes Variable Sgittings Verification Setup Run	Cycle types Solvent correction LMW kinetics Commands Report Points Capture Insett Remove Sample 1 Carry-over control 1 Carry-over control 1 Elsociation ti Flow pate: Elow path: Predip Mix with Flac Establigatio	Image: Second secon	elected cycle type elected cycle type ion of sample and carry-over control (running buffer). Method Variables Evaluation Variables Set property as variable Solution Contact time (s) Dissociation time (s) Flow rate (µ//min) Extra wash solution
	Save Save As		

Cycle types では大きく分けて 4 つの設定項目があります。

① サイクルタイプの作成、削除、名前の変更

ウィザードで作成したプログラムを読み込んでいる場合は、通常はここで新たな サイクルタイプを追加する必要はありません。作成法の詳細は、補足 6-3. を参照 してください。

② 各サイクルのコマンドの設定およびパラメータの入力

Commands Report Points		Commands	Report Points	
Capture 💌		Capture	*	
Capture Sample Enhancement Regeneration Carry-over control Solvent correction InjectAndRecover General Ifthen		Sample 1 Carry-over	r control 1	1

Biacore T200 日本語取扱説明書

各コマンドをプルダウンメニューから選択し、Insert (Insert) をクリック して追加します。各コマンドの順序は 1 および し にて調整します。各コマ ンドのパラメータは、右隣の画面②で入力します。以下の9種類があります。 使用頻度が高いのは Capture、Sample、Regeneration です。中でも Sample は、 Evaluation software で、反応速度定数や親和定数の算出および濃度測定などの解析 を実行する際に必須なコマンドとなります。

Sample

測定サンプル(アナライト)の添加コマンドです。

Types:

添加モード

Low Sample consumption

サンプルの消費量が少なく、サンプル消費量は、7 mm プラスチックバイアル使用時、添加容量 +28 µl です。

High performance

サンプル添加時の希釈が少なく、サンプル消費量は、7 mm プラスチックバイアル使用時、添加容量 + 58 µl で す。主に、反応速度定数や解離定数の算出時に用いま す。

Single cycle kinetics

シングルサイクル法による反応速度定数や解離定数算 出時に用います。最大 5 濃度までアナライトの連続添 加が可能です。サンプル消費量は、7 mm プラスチック バイアル使用時、添加容量 +58 µl です。

Sample solution: $mathcal{F}$ $mathcal{F}$

Contact time: サンプル添加時間(s)を入力します。

Dissociation time: 解離時間 (s) を入力します。シングルサイクル法では、 最後に添加するサンプルの解離時間の設定となります。

Flow rate: 流速(µl/min)を入力します。

Flow path:サンプル添加流路を選択します。Detection を Dual に設定している場合、以下のフロー

6. メソッドによるプログラムの作成 137

セルにサンプルが流れます。必要に応じて選択します。
First 2-1 の場合は 1、4-3 の場合は 3
Second 2-1 の場合は 2、4-3 の場合は 4
Both 2-1 の場合は 1 および 2 4-3 の場合は 3 および 4

Detection を Multi に設定している場合は、該当するフ ローセル番号をプルダウンメニューから選択します。

Predip サンプルを分取する前にニードルを洗浄する場合にチ ェックを入れるます。

Mix with: サンプルを自動混合します。

各サンプルは指定された溶液と混合後に添加されます。 混合したい溶液の名称を入力します。Fraction:にサン プルおよび混合用溶液の"混合比"を入力します。 例えば 20(%) と入力すると、混合用溶液 20%とサン プル 80%が混合されます。混合後は、Stabilization period after mix に入力された時間が経過した後に添加 されます。 阻害法を用いた濃度測定実験で使用します。なお、Mix 機能を使用する場合には必ず混合用のバイアルが必要 です。

Extra wash after injection with:

サンプル添加後のフローセル以外の流路を洗浄する場 合にチェックを入れます。洗浄溶液名を入力します。 センサーチップ表面には流れません。

Stabilization period:次のコマンド実行までの待機時間を設定する場合にチ
ェックを入れます。待機時間(s)を入力します。

Capture

リガンドのキャプチャー用添加コマンドです。

Enhancement

アナライトの結合確認、またはシグナル増幅として 2 次抗体などを添加するコマ

ンドです。

Regeneration

再生溶液の添加コマンドです。粘性が高い溶液(40% グリセロール以上)を使用 する場合は、High viscosity solution にチェックを入れます。

Carry-over control

キャリーオーバーチェックの添加コマンドです。

40 µl/min で 30 秒ランニング緩衝液を添加します。Evaluation Software で結合レス ポンスからキャリーオーバーを評価します。低分子化合物をアナライトとして添 加する場合は、測定サイクルの最後に実施することを推奨します。

Solvent correction

溶媒補正溶液の添加コマンドです。 30 µl/min で 30 秒溶媒補正溶液を添加します。溶媒補正溶液を添加する数だけ、コ マンドを挿入します。

InjectAndRecover

結合したアナライトの回収コマンドです。

General

Sample コマンドと同等の機能を持ちますが、添加モードに Dual Inject の機能が追加されています。Dual Inject は、1 つ目のサンプル添加終了後、ランニング緩衝液での自動洗浄をはさむことなく、引き続き 2 つ目のサンプルを添加することができます。ただし、General コマンドで実行したデータは解析できません。

lf...Then

自動判断機能コマンドです。 取得したレポートポイントから、その次の操作コマンドの追加、省略、プログラ ム全体を終了させる設定が可能です。

③ 各測定サイクルの変数の設定

```
変数設定には、Method Variables と Evaluation Variables の 2 つがあります。
```

Method Variables Evaluation Variables		Method Variables	Evaluation Variables
Set property as variable		Evaluation purpo	se:
Solution		Kinetics/Affinity	*
 Contact time (s) Dissociation time (s) Flow rate (µl/min) Extra wash solution 		Predefined variab	les:
		Name	Value type
		Conc	Numeric
		User-defined varia	ables:
		Name	Value type
		Add	Delete

Method Variables

各測定サイクルのコマンドおよびパラメータの変数を設定できます。通常、サン プルコマンドの変数の設定は、Solution にチェックが入っています。測定サイクル ごとに添加時間などを変数として設定する場合は、各項目にチェックを入れます。

Evaluation Variables

解析ソフトウェアに反映される変数の設定および解析目的を設定します。 テンプレートのメソッドやウィザードで作成したプログラムを開いている場合、 Evaluation purpose に応じて解析に必要な変数はあらかじめ設定されています。そ れらのチェックは外さないように注意します。チェックが入っていなくても測定 自体は実行されますが、Evaluation software による解析は実行できません。 プログラムに定義されていないパラメータを作成する場合は、User defined variables 下の Add...をクリックし作成します。Evaluation purpose は、Sample コ マンドの設定時のみ表示されます。Evaluation purpose には以下の7種類がありま す。

Kinetics/Affinity	Thermodynamics
Concentration	Affinity in solution
Kinetics – Heterogeneous analyte	Calibration – free conc
General	

140 6. メソッドによるプログラムの作成

④ レポートポイントの編集

Report Points タブをクリックすると、各コマンドのレポートポイントの一覧を見ることが きます。レポートポイントの追加方法は以下の通りです。

Name	Name Sec Before/A		After	Start of/E	nd of	Inject		Window	Baseline		
baseline	10	Before	-	Start of	-	Sample 1	-	5	Yes	-	
binding	5	Before	-	End of	-	Sample 1	-	5	No	-	
stability	10	After	-	End of	-	Sample 1	-	5	No	-	
co_baseline	10	Before	-	Start of	-	Carry-over control	1 🔻	5	Yes	-	
co_binding	5	Before	-	End of	-	Carry-over control	1 🔻	5	No		
co_stability	10	After	-	End of	-	Carry-over control	1 🔽	5	No	•	
			-		-		-			•	
Sec		s 1	Start of / End of および Inject で定義されるイベントから 何秒離れた時刻にレポートポイントを取るかを設定し ます。								
Before / /		Ĩ	Start of / End of および Inject で定義されるイベントの 後どちら側にレポートポイントを取るかを設定します								
Start of / End of				Inject で定義されるイベントの開始時および終了時の どちらを基準点にするかを設定します。							
Inject				取得したいレポートポイントと関連づけるイベントを プルダウンメニューから選択します。							
Window		;	レポートポイントの値(RU)を算出するための時間 を設定します。通常 5 秒です。指定した時間の平均 をレポートポイントとします。								
Baseline		Ē	該当するレポートポイントをベースライン(相対値 0) にするか設定します。								

142 6. メソッドによるプログラムの作成

New Control sample 4 [Control sample] Control sample 4 [Control sample] Every 15 cycles. Code Startup 5 [Startup] Thermodynamics 3 time as entered. Every 15 cycles. Move Up Itime as entered. Every 15 cycles. Move Up Control sample 5 [Control sample] Thermodynamics 1 time as entered. Every 15 cycles. Move Doon Control sample 5 [Control sample] Control sample 5 [Control sample] Time as entered. Every 15 cycles. Stage attings Control sample 1 time as entered. Every 15 cycles. Every 15 cycles. Stage attings Econtrol sample 1 time as entered. Every 15 cycles. Stage attings Econtrol sample 1 time as entered. Every 15 cycles. Stage attings Econtrol sample 1 time as entered. Every 15 cycles. Vet A SF vy Jo B & Evel Number of starter of the stare	🕂 New		
Deter image: Control sample: Control sample: I time as entered. Wowe Up image: Control sample: Statup: Statup		t Cor	ontrol sample 4
Cory Startup 5 More Up Thermo 5 More Down Control sample 5 Control sample 1 Thermodynamics 1 time as entered. Exception Control sample 1 Say step 1 Not connected 1 time as entered. Exception Prevery 15 cycles. Assay step 1 Not connected 1 time as entered. Exception Prevery 15 cycles. Assay step 1 Not connected 1 time as entered. Exception Prevery 15 cycles. Assay step properties Prevery 15 cycles. Ease stelling: Prevery 15 cycles. Vecto Run List. Prevery 15 cycles. Vecto Run List. Prevery 15 cycles. Vecto Run Connect to 10 Prevery 15 cycles. Vecto Run Connect to 10 Prevery 15 cycles. Vecto Run Connect to cycle type. Solvent correction Name Solvent correction Purpose Solvent correction Purpose Solvent correction Purpose Solvent correction Locanect to cycle type Solvent correction Locanect to cycle type Solvent correction Loca			ontrol sample Control sample 1 time as entered. Every 15 cycles.
Image: Startup: Thermodynamics 3 times as entered. Image: Startup: Image: Startup: Image: Image: Startup: Image: Startup: Image: Imag	Copu	Startup 5	•
Move Up Inver Even Server List. Inverse Settings Name Solvent correction Purpose Solvent correction Direction Solvent correction Solvent	E CODÀ	[Startup]	Thermodynamics 3 times as entered.
Move Up Move Up Move Down Control sample 5 Control sample 1 time as entered. Control sample 1 time as entered. Every 15 cycles e tellings net interest of the second o		TL SUBS D	↓
Wave Down	Move Up	[Sample]	Thermodynamics 1 time as entered.
vertical semple 3 (Control sempl	Down	L	
Image: Control sample 1 time as entered. Every 15 cycles. * step properties * * step prove the step once last * * ter prove ter prove to correction * * uppose Solvent correction * uppose	JVE DOWN	▲ Cor	ontrol sample 5
Assay step 1 Not connected 1 time as entered. Aun List. Nume Solvent correction Purpose Solvent correction			ontrol sample] Control sample 1 time as entered. Every 15 cycles.
tin Not connected 1 time as entered. turn List. ep properties thrps: Implie Interest assay step within: Themo 5 Implie Interest assay step once first Implie Intere		Assay step 1	•
Aun List. there properties there is the image of the series of the		[]	Not connected 1 time as entered.
sp properties https:///www.interference///www.interference//ww	un List		
Name Solvent correction Connect to Solvent correction Connect to Solvent correction Purpose Solvent correction Connect to cycle type Solvent correction Lでステップの追加は完了です。 ↓ 加したステップは必要に応じて Recurrence、Number of replicates、Assay ster parations を適切に設定します。	pose:	ted も後尾に新規の クして選択し Base settings	 Every Distribute Run assay step once first Run assay step once first Run assay step once last のステップ (ここでは Assay step 1) が挿入されます。 、 Base settings の設定に移ります。
Purpose: Solvent correction Connect to cycle type: Solvent correction Name Solvent correction Purpose Solvent correction Connect to cycle type Solvent correction Eでステップの追加は完了です。 ↓ 如したステップは必要に応じて Recurrence、Number of replicates、Assay stere parations を適切に設定します。		Name:	Solvent correction
Connect to cycle type: Solvent correction Name Solvent correction Purpose Solvent correction Connect to cycle type Solvent correction Connect to cycle type Solvent correction crcステップの追加は完了です。 ↓ □したステップは必要に応じて Recurrence、Number of replicates、Assay stere parations を適切に設定します。		-	
cycle type: Name Solvent correction Purpose Solvent correction Connect to cycle type Solvent correction でステップの追加は完了です。 ↓ コしたステップは必要に応じて Recurrence、Number of replicates、Assay stere parations を適切に設定します。		Purpose:	Solvent correction
Name Solvent correction Purpose Solvent correction Connect to cycle type Solvent correction でステップの追加は完了です。 ↓ したステップは必要に応じて Recurrence、Number of replicates、Assay ster arations を適切に設定します。		Purpose: Connect to	Solvent correction
Name Solvent correction Purpose Solvent correction Connect to cycle type Solvent correction でステップの追加は完了です。 ↓ Iしたステップは必要に応じて Recurrence、Number of replicates、Assay ster parations を適切に設定します。		Purpose: Connect to cycle type:	Solvent correction
Purpose Solvent correction Connect to cycle type Solvent correction ママステップの追加は完了です。 ↓ ロしたステップは必要に応じて Recurrence、Number of replicates、Assay stemerations を適切に設定します。		Purpose: Connect to cycle type:	Solvent correction
Connect to cycle type Solvent correction Connect to cycle type Solvent correction Connect to cycle type Solven	Name	Purpose: Connect to cycle type:	Solvent correction
Connect to cycle type Solvent correction でステップの追加は完了です。 ↓ コーしたステップは必要に応じて Recurrence、Number of replicates、Assay ster parations を適切に設定します。	Name	Purpose: Connect to cycle type:	Solvent correction
でステップの追加は完了です。 ↓ コしたステップは必要に応じて Recurrence、Number of replicates、Assay ste parations を適切に設定します。	Name Purpose	Purpose: Connect to cycle type:	Solvent correction
eparations を適切に設定しより。	Name Purpose Connect to	Purpose: Connect to cycle type:	Solvent correction Solvent correction Solvent correction Solvent correction Solvent correction
	Name Purpose Connect to 上でステップの追ば 加したステップ	Purpose: Connect to cycle type: 加は完了です。 は必要に応じ	Solvent correction Solvent correction Solvent correction Solvent correction Solvent correction C C C Recurrence、Number of replicates、Assay step

🌆 Method Builder - M	tain	
Overview General Settings Assay Steps Cycle Types Variable Settings Verification Setup <u>R</u> un	Assay steps Sample Solvent correction Control sample Enter values for the variables in this assay step. Terr values for the variables in this assay step.	
	Save As Qlose	

Variable Settings をクリックします。

各ステップの変数をどの時点で入力するのか、画面右上の3項目から選択します。

Define all values at run time

測定開始直前に入力するモードです。

Define all values in method

現画面上で入力するモードです。作成したメソッドを頻繁にテンプレートとして使用し、毎回変更がない場合は、ここで入力しておくと、測定 直前での情報入力が不要となります。

Define some values in method and others at run time

幾つかの情報を現画面上で入力し、その他の情報は測定開始直前に入力 するモードです。

 \downarrow

Verification をクリックします。

🔚 Method Builder - A	Main	
Overview	Verification results	
General Settings	The method has been verified and can be used to set up a run.	
Assay Steps		
Cycle <u>Types</u>		
Variable Settings		
<u>V</u> erification		
Setup <u>R</u> un		
	<u></u>	
	Save Save As	

メソッドの設定に不備が無ければ**"The method has been verified and can be used to set up a run.**"と表示されます。間違いがある場合は該当部分が表示されるので、指示に従って修正します。

確認後、Setup Run をクリックします。

		\downarrow			
🔤 Method Bu	ilder - Detecti	ion			×
Detection					
<u>F</u> low path:	2.1				
	3,4 2-1				
<u>H</u> elp	4-3	ck	<u>N</u> ext >	<u>C</u> lose	

適切な Flow path を選択し、Next をクリックします。

 $[\]downarrow$

Assay Startı Samp Contr	steps up le		
Assay Startı Samp Contr	steps up ile ol sample		
Startı Samp Contr	up ile ol sample		
Samp Contr	ol sample		
Contr	or sample		
ariab	le values for A:	ssay Step Samp	le
		Sample 1	
-	Solution	Conc (nM)	MW (Da)
1	sample 1	0	
2	sample 1	1.95	
3	sample 1	7.81	
4	sample 1	31.25	
5	sample 1	0	
6	sample 1	125	
7	sample 1	500	
8	sample 1	2000	
9	sample 1	125	
10	sample 1	0	
11	sample 2	0	
12	sample 2	1.95	
13	sample 2	7.81	
14	sample 2	31.25	
15	sample 2	0	
16	sample 2	125	
		¢	
<u>H</u> e	ip Ir	nport	

Sample & Assay Setup のすべてのステップについて必要事項を入力します。

"Define all values at run time"を選択したステップは、この時点でサンプル情報の入力が必要となります。各ステップをクリックすると、画面下にサンプル情報が入力できるようになります。入力する必要のないカラムが出てきた場合は、空欄のまま次に進みます。

補足 6-4. Excel ファイルで作成したサンプル情報の入力

Excel ファイルで作成したサンプル情報を移行するには、Excel での保存時、タブ区切りのテキストファイル(拡張子は txt)を選択します。タブ区切りで保存したデータを上記画面で 開き、コピーペーストで入力します。

すべての項目を入力後、Next >をクリックします。

 \downarrow

🎰 Meth	od Builder - Cycl	e run list				×
Cycle	Assay step name	Sample 1 Solution	Sample 1 Conc (nM)	Sample 1 MW (Da)		~
1	Startup	buffer	0			
2	Startup	buffer	0			
3	Startup	buffer	0			
4	Solvent correction					
5	Control sample	negative control	125			
6	Control sample	positive control	125			
7	Sample	sample 1	0			
8	Sample	sample 1	1.95			
9	Sample	sample 1	7.81			
10	Sample	sample 1	31.25			
11	Sample	sample 1	0			
12	Sample	sample 1	125			
13	Sample	sample 1	500			
14	Sample	sample 1	2000			
15	Sample	sample 1	125			
16	Sample	sample 1	0			
17	Control sample	negative control	125			
18	Control sample	positive control	125			
19	Sample	sample 2	0			
20	Sample	sample 2	1.95			
21	Sample	sample 2	7.81			
22	Sample	sample 2	31.25			
23	Sample	sample 2	0			
24	Sample	sample 2	125			~
<u>H</u> e	lp <u>O</u> verview	<u>Print</u>		< <u>B</u> ack	<u>N</u> ext > <u>C</u> lose	

サイクルリストが表示されます。上から順番に測定が実行されます。 問題が無ければ、**Next >**をクリックします。 <u>6-3. メソッドの実行</u>

🔤 Kinetics/Affinity - System Pre	parations 🛛 🔀
Prime before run Nor <u>m</u> alize detector	
Temperature settings Analysis temperature:	25 (°C)
Sample compartment temperature:	25 (°C)
Help Cycle Run List	< <u>B</u> ack <u>N</u> ext > <u>C</u> lose

測定を始める前に、Prime および Normalize を実施する場合はチェックを入れます。 設定後、Next >をクリックします。

 \downarrow

leagent Rack 2	Position	Volume (µl)	Content	Туре	Sample 1 Conc (nM)	Sa M
$\frown \circ \circ \circ \circ \circ \circ$	R1 A1	88	negative control	Control sample	125	
	R1 A2	88	negative control	Control sample	125	
	R1 A3	88	negative control	Control sample	125	
1 = 10407	R1 A4	88	negative control	Control sample	125	
	R1 A5	88	positive control	Control sample	125	
	R1 A6	88	positive control	Control sample	125	
	R1 A7	88	positive control	Control sample	125	
	R1 A8	88	positive control	Control sample	125	
A B C D E F G	R1 B1	88	sample 1	Sample	0	
Well Microplate	✓ R1 B2	88	sample 1	Sample	1.95	
	R1 B3	88	sample 1	Sample	7.81	
	R1 B4	88	sample 1	Sample	31.25	
* 0000000	R1 85	88	sample 1	Sample	0	
$\bigcirc \bigcirc $	R1 B6	88	sample 1	Sample	125	
	R1 87	88	sample 1	Sample	500	
	R1 88	88	sample 1	Sample	2000	
$0 \bullet \bullet 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$	R1 B9	88	sample 1	Sample	125	
\bigcirc	R1 B10	88	sample 1	Sample	0	
	R1 B11	88	sample 2	Sample	0	
	R1 B12	88	sample 2	Sample	1.95	
\bigcirc	R1 C1	88	sample 2	Sample	7.81	
	R1 C2	88	sample 2	Sample	31.25	
	R1 C3	88	sample 2	Sample	0	
	R1 C4	88	sample 2	Sample	125	
	R1 C5	88	sample 2	Sample	500	
$\bigcirc \bigcirc $	R1 C6	88	sample 2	Sample	2000	
	R1 C7	88	sample 2	Sample	125	
	R1 C8	88	sample 2	Sample	0	
ABCDEFGH	in co		Jumpie 2	Joinpic		1

右側の表でサンプルの位置とサンプル量(µl)を確認します。表中のサンプルをクリックす るとそれに対応するラック上の位置が強調表示されます。位置と容量を確認しながらバイ アルおよびサンプルをラックにセットします。

補足 6-5. サンプル位置の変更

サンプル位置は、上記画面に切り替わった時点で自動的に設定されます。あらかじめサン プル位置が決まっているプレートを使用する場合は、画面左下の Menu → Export Positions...を実行し、サンプル位置をタブ区切りのテキストファイルとして保存します。必 要事項を変更した後ファイルを保存し、Menu → Simple Position Import...でそのファイル

148 6. メソッドによるプログラムの作成

を読み込むと、サンプル位置が変更されます。

Eject Rack をクリックして、**Rack tray port** を開きます。

 \downarrow

ラックトレイを奥まで挿入し、OK をクリックします。Eject Rack Tray ダイアログが閉じた 後、Rack Positions ダイアログ右下の Next をクリックします。

測定時の基本的な共通注意事項と測定時間、必要なランニング緩衝液容量が表示されます。 Start をクリックします。

 \downarrow

設定したメソッドをテンプレートとして保存するかメッセージが表示されます。保存の場 合は、Save as で Methods and Templates フォルダまたは Bia Users の各自のフォルダに保 存します。保存しない場合は、Don't Save を選択します。

Ļ

Save in:に<u>測定結果の保存先を設定</u>し、File name にファイル名を入力して、Save すると測 定が開始します。

Ţ

終了後、装置は Standby flow 状態になります。

測定データは入力したファイル名で自動に保存され、Biacore T200 Evaluation Software が自 動的に起動して、各サイクルの測定結果が重ね書き表示されます。 解析およびデータの評価は各章を参照してください。

補足 6-6. 同一バイアルからのサンプリング設定

サンプル位置は、同一サンプルであっても、添加回数分、分注して配置されるように組ま れています(例えば同一の Control Sample であっても、R1A1 から R1A12 に 12 バイアルに 分けてセットするように指示されます)。同一サンプルを同バイアルから使用したい場合は プーリング機能を利用します。

eagent Rack 2	Position	Volume (ul)	Content	Туре	Sample 1
$\neg 00 \land 00 \land$	R1 A1	148	Negative control	Control sample	40
	R1 A2	148	Negative control	Control sample	40
	R1 A3	148	Negative control	Control sample	40
) R1 A4	148	Negative control	Control sample	40
	R1 A5	148	Negative control	Control sample	40
	R1 A6	148	Negative control	Control sample	40
) R1 A7	148	Positive control	Control sample	40
	R1 A8	148	Positive control	Control sample	40
een Well Microplate	 R1 A9 	148	Positive control	Control sample	40
	R1 A10	148	Positive control	Control sample	40
	R1 A11	148	Positive control	Control sample	40
\bigcirc	R1 A12	148	Positive control	Control sample	40
<u> </u>	R1 B1	148	Analyte A	Sample	0
<u> </u>	R1 B2	148	Analyte A	Sample	160
	R1 B3	148	Analyte A	Sample	10
	R1 B4	148	Analyte A	Sample	20
\bigcirc	R1 B5	148	Analyte A	Sample	40
000000	R1 B6	148	Analyte A	Sample	80
	R1 B7	148	Analyte A	Sample	160
	R1 B8	148	Analyte A	Sample	0
	R1 B9	148	Analyte A	Sample	160
\bigcirc	R1 B10	148	Analyte A	Sample	10
\bigcirc	R1 B11	148	Analyte A	Sample	20
	R1 B12	148	Analyte A	Sample	40
	R1 C1	148	Analyte A	Sample	80
\circ	R1 C2	148	Analyte A	Sample	160
ABCDEFGH	D1 C2	140	Amakatan A	Comple	0

Menu から Automatic Positioning...を選択します。

Control sample Cyan v Column v Bottom left v Sample Sample Sample Content - Ascending v N Sample DarkBlue v Column v Bottom left v Sample Sample Small v Auto v Content - Ascending v N Startup Crimson v Column v Bottom left v Small v Auto v Content - Ascending v N Wash Yellow v Column v Bottom left v Reagent Large Auto v Content - Ascending v N Solvent correction (buffer A) Blue v Column v Bottom left v Reagent Small Auto v Content - Ascending v N		COIOI		Orientat	ion	Anchor		Rack		Vial Si	że –	Pool	ing	First Sort By		Move
Sample DarkBlue Column Bottom left Sample Sample Sample Sample Sample Auto Content - Ascending Au	Control sample	Cyan	-	Column	-	Bottom left	-	Sample	•	Small	-	Auto	-	Content - Ascending	- I	·
Startup Crimson Column Bottom left Sample Small Auto Content - Ascending N Wash Yellow Column Bottom left Reagent Large Auto Content - Ascending N Solvent correction (buffer A) Blue Column Bottom left Reagent Small Auto Content - Ascending N	Sample	DarkBlue	-	Column	-	Bottom left	-	Sample	•	Small	-	Auto	-	Content - Ascending	- I	Move D
Wash Column Column Bottom left Reagent Large Auto Content - Ascending Auto Solvent correction (buffer A) Blue Column Bottom left Reagent Small Auto Content - Ascending Auto Content - Ascending Auto	Startup	Crimson	-	Column	-	Bottom left	-	Sample	•	Small	-	Auto	-	Content - Ascending	- 1	Ň.
Solvent correction (buffer A) 🔂 Blue 🔹 Column 🔹 Bottom left 🔹 Reagent 💽 Small 🕠 Auto 🖉 Content - Ascending 💿 M	Wash	Yellow	-	Column	-	Bottom left	-	Reagent	•	Large	1-	Auto	-	Content - Ascending	- 1	Ň.
	Solvent correction (buffer A)	Blue	-	Column	-	Bottom left	-	Reagent	-	Small	1	Auto	1	Content - Ascending	- I	N .
\smile												$\overline{}$				

ここで、すべてのサンプルと試薬に関する配置設定が可能です。

"Pooling"の項目は、通常、Auto になっています。

同一バイアルからサンプリングしたいサンプル、試薬の種類について、**"Pooling**"のプルダ ウンメニューから Yes を選択し、ダイアログ右下の OK をクリックします。

なお、Automatic Positioning ダイアログでは色やバイアルのサイズの設定もできるので、 これらも必要に応じて適宜設定を変更します。 150 6. メソッドによるプログラムの作成

補足 6-7. プログラムの緊急停止	
Run \rightarrow Stop Run $e \neq 0$ $\forall \neq 0$ $\forall \neq 0$	
Biacore T200	
This will stop the run	
Help Stop Run Cancel	
ボックス中の Stop Run をクリックします。	
\downarrow	
Run Stopped	
Finishing current cycle, please wait	
Abort cycle by [Ctrl]+[Break]	
<u>実行中の測定サイクルが終了するまで待機し終了します。</u>	
上記ウインドウが開いている状態で、ただちにプログラムを終了したい場	合には、画面の
<u>表示に従い、キーボードの[Ctrl]キーと[Break]キーを同時に押します。</u>	
終了した時点までのデータが Biacore T200 Evaluation Software に移行されま	す。

7. メンテナンス

システム内部に設置されているマイクロ流路系(IFC)は消耗品であり、使用するサンプル の性状や使用頻度に応じて、耐久月数が異なります。より長くマイクロ流路系を使用する ために、システム使用ごとのメンテナンスの実施を推奨します。

システムのメンテナンスは既定のメンテナンスプログラム (Menu bar の Tools \rightarrow More Tools... \rightarrow Maintenance Tools...) に従って実行します。

ランニング緩衝液として、超純水を使用します。また、メンテナンス時はメンテナンス用 試薬によりセンサーチップ表面に固定化しているリガンドは破壊されてしまうので、必ず Sensor Chip Maintenance(もしくは使用済みセンサーチップ)を使用してください。 システム温度は、25℃に設定します。

メンテナンスコマンドの呼び出し

Menu bar の Tools \rightarrow More Tools...を選択します。

 \downarrow

Tools ダイアログが表示されます。

Tools 🛛
Maintenance Tools
This procedure removes adsorbed material from the flow system. Total run time is about 20 minutes. Do not run this procedure below 20°C. NOTE: Use the Maintenance Chip for this procedure. The surface on other sensor chips may be damaged by the solutions used.
Last run time: 5/20/2008 9:25 AM
Help Start Cancel

各コマンドを選択すると、ウインドウ下で内容と最終実施日が確認できます。

メンテナンスに必要な試薬

通常のメンテナンスに必要な試薬は、Biacore Maintenance Kit, type 2 (BR-1006-51)に含ま れています。

BIAdesorb solution 1	95 ml x 2
BIAdesorb solution 2	95 ml x 2
BIAtest solution	65 ml
BIAdisinfectant solution (con	c.) 10 ml x 3
BIAnormalizing solution	90 ml
HBS-N Buffer	10 X 50 ml
Sensor Chip Maintenance	1枚

BIAdesorb solution 1 は 4 ℃で保存すると SDS が析出します。BIAdesorb solution 1 のみ室温で保存してください(その他のキット内試薬は、4 ℃ で保存してください)。

Sensor Chip Maintenance は洗浄用チップです。

保存時には、埃が付着しないように、パラフィルムで巻いて室温で保存 してください。再使用時には、ガラス面に汚れが付着していないことを 確認してから Dock してください。また、定期的に新しいものに交換して ください。

補足 7-1. メンテナンスチップへの交換方法
Toolbar の Eject アイコン(∓)または Menu bar の Tools → Eject Chip… を選択します。 ↓
Biacore T200 Image: Constant of the sensor chip Image: Help Eject Chip Cancel
Eject Chip をクリックします。
↓ センサーチップポートが開くのでセンサーチップを取り出し、メンテナンス用センサーチ ップ(Sensor Chip Maintenance)をセットします。あわせて、ランニング緩衝液ボトルを超 純水ボトルに交換します。 ↓
Insert Chip New chip Chip type: Maintenance Chip id: 080609-0135:1387521] Chig lot no: (optional) Help Dock Chip Cancel
 Insert Chip ダイアログが表示されるので Chip type: Maintenance を選択後、 Chip id;を入力
し、Dock Chip をクリックします。
Dock か元」すると目動的に Standby flow 状態になります。 Dock 終了後は、超純水で Prime を実行します。

7-1. システムの洗浄

7-1-1. Desorb

IFC および、サンプルチューブに付着した汚れなどを洗浄するプログラムです。 1 週間に 1 回、必ず実施してください。実験内容の変更ごとに実施することを推奨します。 なお、クルードサンプルや不溶性サンプル使用時には、実験終了後に実施してください。 所要時間は、約 20 分です。測定温度および Sample compartment 温度は、20 ℃以上で実 施してください。

試薬

Biacore Maintenance Kit, type 2

BIAdesorb solution 1 (0.5 % SDS)

BIAdesorb solution 2 (50 mM Gly-NaOH、 pH 9.5)

ランニング緩衝液

超純水

Tools \rightarrow **More Tools...** \rightarrow **Maintenance Tools** \rightarrow **Desorb** を選択し**Start...**をクリックします。

内容を確認後、Next >をクリックします。

	•
I	Desorb 🗵
	Required solutions (from Maintenance Kit):
	BIAdesorb solution 1 BIAdesorb solution 2
	< <u>B</u> ack <u>N</u> ext> <u>C</u> lose

1

内容を確認後、Next >をクリックします。

 \downarrow

BIAdesorb solution 1 および、BIAdesorb solution 2 を、指示された量分注してラックにセット し、**Start** をクリックします。

 \downarrow

Desorb 終了後、装置は自動的に **Standby flow** の状態になります。そのままの状態で 3~4 時間放置するか、**Prime** を 3 回実施します。

7-1-2. Desorb and Sanitize

すべてのフローシステムの滅菌および洗浄するプログラムです。

<u>1ヶ月に1回、必ず実施してください</u>。所要時間は、約1時間です。測定温度および Sample compartment 温度は、20 C以上で実施してください。

バッファーチューブ(チューブ A, B, C, D)の洗浄後、A 以外のチューブ(チューブ B, C, D) を空にして終了します。

試薬

Biacore Maintenance Kit, type 2

- BIAdesorb solution 1 (0.5 % SDS)
- BIAdesorb solution 2 (50 mM Gly-NaOH、 pH 9.5)

BIAdisinfectant solution 原液 6 ml を超純水 80 ml で希釈

ランニング緩衝液

超純水

Maintenance Tools \rightarrow Desorb and Sanitize を選択して Start...をクリックします。

内容を確認後、Next >をクリックします。

	\mathbf{v}	
Desorb and Sanitize		×
Required solutions (from BIAdesorb solution 1: BIAdesorb solution 2: BIAdisinfectant solution:	Maintenance Kit): one volume of 25 ml and one volume of 15 ml one volume of 25 ml and one volume of 15 ml one volume of 50 ml and one volume of 30 ml < <u>Back</u>	

I

内容を確認後、Next >をクリックします。

 \downarrow

Desorb and Sanitize 🛛 🔀
Step 1
Place 25 ml BIAdesorb Solution 1 on the left hand tray and insert all four pump inlet tubes. Place 15 ml BIAdesorb Solution 1 on the right hand tray and insert the water inlet tube.
< <u>B</u> ack Start Close

BIAdesorb Solution 1 を 25 ml, 15 ml の 2 本に分注します。

チューブ A, B, C, D は、すべて BIAdesorb Solution 1 ボトル(25 ml)にセットします。超純水 チューブを、BIAdesorb Solution 1 ボトル(15 ml)にセットします。 Start をクリックします。

Ţ

ステップ1の終了後、自動的にステップ2のダイアログが表示されます。

Desorb and Sanitize	×
Step 2	
Wipe the pump inlet tubes with a moist tissue.	
Place 25 ml BIAdesorb Solution 2 on the left hand tray and insert all four pump inlet tubes. Place 15 ml BIAdesorb Solution 2 on the right hand tray and insert the water inlet tube.	
< <u>B</u> ack Start Close	

BIAdesorb Solution 2 を 25 ml, 15 ml の 2 本に分注する。

チューブ A, B, C, D は、すべて BIAdesorb Solution 2 ボトル(25 ml)にセットします。超純水 チューブを、BIAdesorb Solution 2 ボトル(15 ml)にセットします。 Start をクリックします。

ステップ2の終了後、自動的にステップ3のダイアログが表示されます。

BIAdisinfectant Solution を 50 ml, 30 ml の 2 本に分注します。

チューブ A, B, C, D は、すべて BIAdisinfectant Solution ボトル (50 ml) にセットします。超純 水チューブを、BIAdisinfectant Solution ボトル (30 ml) にセットします。 Start をクリックします。

ステップ3の終了後、自動的にステップ4のダイアログが表示されます。

Desorb and Sanitize
Step 4
Wipe the pump inlet tubes with a moist tissue.
Place water on the left hand tray and insert all four pump inlet tubes. Place water on the right hand tray and insert the water inlet tube.
< <u>B</u> ack <u>Start</u> Close

チューブ A, B, C, D は、すべて超純水ボトル(ランニング緩衝液ボトル)にセットします。 超純水チューブを、超純水ボトルにセットします。 Start をクリックします。

 \downarrow

ステップ4の終了後、自動的にステップ5のダイアログが表示されます。

Desorb and Sanitize	×
Step 5	
Place tube A in a HEPES or TRIS buffer.	
Recommended concentration 10-50 mmol/l. Let tubes B,C and D hang in the air.	
< Back Start Close	

チューブ A を緩衝液(10~50 mM HEPES や Tris 緩衝液)が入ったボトルにセットします。 チューブ B, C, D は、空気を吸えるようにボトルから取り出します。 Start をクリックします。

esorb and Sanitize			<u> </u>
The Desorb and Sanitize	e procedure is comple	eted.	
Allow the system to run i performing a run.	n standby mode for a	it least 3-4 hours t	pefore
	< Back	Next>	Clos

<u>ステップ 5 の終了後、装置は自動的に Standby flow の状態になります。この状態で 3~4</u>時間放置します。もしくは、Prime を 3 回実施します。

Close をクリックして、洗浄を終了します。 電源を落とす場合には、超純水で Prime を実行してください。

なお、汚れがひどく Desorb and Sanitize で十分な洗浄効果が得られない場合には、Tools→ More Tools→Service Tools の Superclean を実行してください。 158 7. メンテナンス

7-1-3. Empty Buffer Tubing

B,C,D のバッファーチューブを超純水で洗浄後、チューブの中身を空にするプログラムです。 Buffer scouting またはシステムチェックで B,C,D のチューブを使用後、使用する予定がない 場合に実行します。所要時間は、約 20 分です。

ランニング緩衝液

超純水

70%エタノール溶液

Tools → More Tools... → Maintenance Tools → Empty Buffer Tubing を選択し Start...を クリックします。

↓	
Empty Buffer Tubing	\mathbf{X}
This procedure empties all four buffer selector inlet tubes. The procedure is divided into three steps. Total run time is about 20 minutes. Required solutions:	
Deionized water 70% ethanol	
< Back Next > Close	

Next >をクリックします。

\downarrow	
Empty Buffer Tubing	K
Step 1 Place a bottle containing deionized water on the left hand plate and insert the four buffer inlet tubes.	

本体左側のチューブ A,B,C,D をすべて超純水ボトルにセットします。Start をクリックしま す。

ステップ1終了後、自動的にステップ2のダイアログが表示されます。

Empty Buffer Tubing	×
Step 2 Place a bottle containing at least 10 ml 70% ethanol on the left hand plate at insert the four buffer inlet tubes.	nd
< <u>₿</u> ack 	

本体左側のチューブA,B,C,Dすべてを70%エタノール溶液(10 ml)のボトルにセットします。 Start をクリックします。 ステップ2終了後、自動的にステップ3のダイアログが表示されます。

Empty Buffer Tubing	K
Step 3	
Remove the tubes from the ethanol bottle and allow them to hang in the air.	
This step empties the buffer selector of liquid.	
< <u>B</u> ack <u>S</u> tart <u>C</u> lose	
<pre>chip chip contract of an inquicit.</pre>]

本体左側のチューブ A,B,C,D を、空気が吸えるようボトルから出します。 Start をクリックします。

\downarrow	
Empty Buffer Tubing	X
The Empty Buffer Tubing procedure is completed.	
< <u>B</u> ack Next>	<u>C</u> lose

Close をクリックします。B,C,D のチューブは、キムワイプで拭いて、チューブホルダーに 収納してください。 160 7. メンテナンス

7-1-4. Wash Buffer Tubing

A,B,C,D のバッファーチューブを洗浄するプログラムです。 界面活性剤または BSA など、吸着しやすい物質を含んだランニング緩衝液を使用後、それ らの物質を含んでいないランニング緩衝液に切り替えて実験する場合に実行します。

所要時間は、約30分です。

試薬

Biacore Maintenance Kit, type 2

BIAdesorb solution 1 (0.5 % SDS)

BIAdesorb solution 2 (50 mM Gly-NaOH、 pH 9.5)

ランニング緩衝液

超純水

Tools → More Tools... → Maintenance Tools → Wash Buffer Tubing を選択し Start...を $0 \downarrow \neg 0 \downarrow \neg 0 \downarrow z \downarrow z$.

Select tubes to wash		
Tube A		
Tube B Tube C Tube D		
All four tubes		

洗浄するチューブを選択し、Next >をクリックします。

内容を確認後、Next >をクリックします。

 \downarrow

最初に選択したチューブを BIAdesorb Solution 1(20 ml)ボトルに入れ、Start をクリックします。

Ţ

ステップ1終了後、自動的にステップ2のダイアログが表示されます。

Wash Buffer Tubing	×
Step 2	
Wipe the tube with a moist tissue.	
Place 20 ml BIAdesorb Solution 2 on the left hand tray and insert the tube.	
< <u>B</u> ack <u>Start</u> Close	

Ļ

チューブを BIAdesorb Solution 2(20 ml) ボトルに入れ、Start をクリックします。

ステップ2終了後、自動的にステップ3のダイアログが表示されます。

Wash Buffer Tubing	×
Step 3	
Wipe the tube with a moist tissue.	
Place buffer or water on the left hand tray and insert the tube.	
< <u>₿</u> ack <u>S</u> tart <u>C</u> lose	

Ţ

チューブを超純水ボトルに入れ、Start をクリックします。

ステップ3終了後、自動的に以下のダイアログが表示されます。

Wash Buffer Tubing
The Wash Buffer Tubing procedure is completed.
< <u>B</u> ack <u>N</u> ext > <u>Close</u>

Close をクリックします。

使用しないチューブはチューブホルダーに収納してください。

7-2. シグナルの校正

7-2-1. Normalize

センサーチップを新規にセットした際に実施することを推奨します。

試薬

Biacore Maintenance Kit, type 2

BIAnormalizing solution

センサーチップおよびランニング緩衝液

実験に使用するセンサーチップおよびランニング緩衝液

Tools \rightarrow More Tools... \rightarrow Maintenance Tools... \rightarrow Normalize を選択し Start...をクリック します。

	\downarrow
	Normalize
	This procedure normalizes the detector signal. Total run time is about 9 minutes. Required solution (from Maintenance Kitt:
	BIAnormalizing solution
	< <u>B</u> ack <u>N</u> ext > <u>Close</u>
Next >をクリックします	す 。
	\downarrow
バイアルをセット後、	Start をクリックします。
	\downarrow
	Normalize

終了後、下記ダイアログが表示されます。

Normalize	×
The Normalize procedure is completed	
< <u>B</u> ack <u>N</u> ext > Close	

自動的に Standby flow 状態になります。

7-3. システムチェック

装置の診断をおこなうプログラムです。<u>このプログラムは Desorb and Sanitize による洗浄後</u> に実行してください。シグナルのドリフトや、エアースパイクの混入が激しい場合などに 実施します。使用頻度が高い場合、定期的に実行することを推奨します。所要時間は、約1 時間です。

試薬

Biacore Maintenance Kit, type 2

BIAtest solution

ランニング緩衝液

HBS-N Buffer 150 ml 程度(メンテナンスキットの 10X Buffer を希釈して使用します) 超純水

必要な消耗品

<u>新品の Series S Sensor Chip CM5</u> (チェック後、実験に使用可能)

BIAtest solution

1.5 ml プラスチックバイアル

新品のセンサーチップ CM5 を Dock 後、HBS-N 緩衝液で Prime を実施します。

Tools \rightarrow More Tools... \rightarrow Test Tools \rightarrow System Check を選択し Start...をクリックします。

\checkmark
System Check
Select test(s) to run. This procedure should be run at 25°C with a new Sensor Chip CM5 and with HBS-N as running buffer. Choose Close if you need to change the sensor chip, reset the temperature or change running buffer. If any injection is delayed, adjustments can be made by the software. The required test is Injections and refractometer.
Reagent pumps and blank injection Injections and Refractometer Mix Noise Merged and Dual injections (optional) Buffer selector (optional)
Tests if the peristaltic pump is in order and that a sample injection with buffer from the reagent supply block is all right.

System Check ダイアログが表示されます。デフォルトでは、上から 4 項目が選択されてい ます。Next >をクリックします。Merged and Dual injections および Buffer Selector を使用する 場合にはチェックを入れます。

A のチューブを HBS-N Buffer ボトルに入れます。Buffer Selector テストを行う場合には、B,C および D のチューブを超純水の入ったボトルに差し込みます。(Buffer Selector テストが必要なければ、B,C,D のチューブを超純水ボトルに入れる必要はありません。) Next >をクリックします。

BIAtest Solution を、1.5 ml プラスチックバイアルに 795 µl 分注してラックポジションにセットします。また、空の 1.5 ml プラスチックバイアル 4 本を、キャップをして指定のラック ポジションにセットします。Merged and Dual injections テストをおこなう場合には、BIAtest Solution を 995 µl と空バイアルを 7 本セットします。Start をクリックします。

 \downarrow

Biacore T200 日本語取扱説明書 \downarrow

続いて、測定結果の保存先を指定します。File name を入力して、Save すると測定がスタートします。Buffer Selector テストを実施した場合で、システムチェックを実行後、B,C および D のチューブを使用しない場合は Empty Buffer Tubing を実行してください。

		Sys	stem	Che	CK			
Name:				Da	ate:			
Instrument: Created By: Date: File:	Biacore T2) Biacore T2) 02-Sep-20) SysCheck 2	00 00 Control 0 20100902	Software	lns Ve Te	trument id: rsion: mperature:	12114 1.0 25.0 ℃		
Reagent pur	ıp							
vVater Buffer	-2141 -2					(-2600 to -1400 RU) (-50 to 50 RU)	Pass Pass	
Merged Injec	tions Min	Мах						
Injection 1 Injection 2	4925 9603	6735 13198				(4000 to 9000 RU) (9000 to 15000 RU)	Pass Pass	
Mixing								
Mix 1	47.8					(45.0 to 55.0 %)	Pass	
Mix 2 Difference	47.8 0.0					(45.0 to 55.0 %) (<=5.0 %)	Pass Pass	
Refractomete	er –	5.0						
Biatest solution Variation	Fc 1 22309	FC 2 22259	FC 3 22207	FC 4 22294	102	(21400 to 23600 RU) (<=600 RU)	Pass Pass	
Baseline level Variation	36001	35893	35843	36176	333	(<=3000 RU)	Pass	

測定が終了すると、チェック結果が自動的に表示されます。各チェック項目について測定 値が正常範囲内であれば"PASS"、範囲外であれば"FAIL"と診断されます。FAIL が表示されて いる場合には弊社技術サービス部にご相談ください。

 \downarrow

8. 実験の終了

実験が終了した際には、次のいずれかの方法でシステムを維持できます。
 スタンバイ状態で放置 7 日以内に使用する場合
 電源を落として終了 7 日以上使用しない場合

8-1. スタンバイ状態での放置

測定が終了すると、自動的に Standby flow 状態になります。

チューブAにセットしたランニング緩衝液で、65 ml/24 時間の流速を最長7日間継続しま す。ランニングバッファーを涸らさないように注意してください。廃液ボトルの空き容量 にも注意してください。

スタンバイ状態であるか否かは、ウインドウ下の Status bar で確認できます。

8-2. 電源の落とし方

電源を落とす前には、メンテナンスを実行してください。

Toolbar の Eject アイコン (早) または Menu bar の Tools \rightarrow Eject Chip...を選択します。

Eject Chip をクリックします。

センサーチップポートが開きます。センサーチップを取り出し、Biacore T200 control software を終了します。パソコンのシャットダウン、Biacore T200 の本体電源を落とします。 注意)電源を落とす場合は、システム内部が超純水で置き換わっているかどうか確認の上、 電源を落としてください。

8-3. センサーチップの保存

取り出したセンサーチップは、以下の2つの方法で保存できます。 リガンドは保存中に変性する可能性があるので、再使用の際にはポジティブコントロール サンプルのレスポンスからリガンドの活性を確認してください。また、再 Dock 時前には、 検出面、固定化面に埃などの汚れが付着していないことを確認してください。

ドライ状態での保存

取り出したセンサーチップにパラフィルムを巻いて 4℃で保存します。 安定なサンプルを固定したセンサーチップの保存に用います。

ウェット状態での保存

取り出したセンサーチップのシート部分をカバーから抜き取り、シートだけを容器(50 ml 容のふた付きプラスチック遠心チューブ等)に分注した HBS-EP+などの緩衝液に浸し、4 ℃ で保存します。

シートの取り出しと保存

センサーチップはカバーとシートから構成されています。

シートの金基板の窪んでいる面はリガンドが固定化されています。 平らな面は検出器が接触します。<u>リガンド固定化面には触れないよう注意してく</u> ださい。下図のようにピンセットにてシートを抜き出し、緩衝液に浸して保存し ます。

保存していたシートからの緩衝液成分の除去とカバーへの収納

再利用する際は、緩衝液に浸していたシートをカバーに収めます。シートの水分 を取り除いてからカバーに収めてください。

ら水分を吸収します。

プラスチックの部分および検出面

固定化面

キムワイプで拭き、超純水で湿らせたキムワ イプで再度拭きます。さらに乾いたキムワイ プで拭きます。 キムワイプなどを"こより状"に細くして、 金基板の中央部分に触れないように、四隅か

埃に注意しながらカバーに収めます。下図のように、検出面が表になる向きで、 ピンセットにてカバーの左側から挿入します。

リガンド固定化面を表にして挿入した場合には最後までシートが入りません。

9. センサーグラムの編集

ウィザードまたはメソッドを用いた測定プログラム終了後、Biacore T200 Evaluation Software は自動的に立ち上がり、取得データが開かれます。過去に取得したデータを編集解析する 場合は、Evaluation ソフトウェアを起動し、ファイルを呼び出してください。

9-1. ソフトウェアの起動

画面左下の Start \rightarrow All programs \rightarrow Biacore \rightarrow Biacore T200 Evaluation Software e /リックします。

9-2. ファイルの呼び出し

アイコン(🔂) もしくは File → Open…をクリックし、目的のファイルを選択します。(通 常、ファイルは、C:/BIA users/に保存されています。)

ここでは、練習用データ C:/BIA users/T200 demo File / Binding Analysis を選択します。 OK をクリックします。

9-3. センサーグラムの編集

Evaluation Explorer で Sensorgram フォルダから、All sensorgrams をクリックし、Work area 内に Sensorgram window を表示します。

9-3-1. センサーグラムの表示

Sensorgram window 上部のセレクションツールを使用します。

Curve Name: Fc=2-1 The Assay Step Purpose: <0verlay> The Cycle: <0verlay> The Purpose: <0ve

フローセル別センサーグラムの選択

Curve Name: Fc=2-1
 「●●の●もしくは●●をクリックし、目的のフローセルを選

択します。

複数のフローセルを同時に選択する場合は、 🔽を使用します。

Curve Name: Fc=2-	1 🛛 💌 🕨 🗹
Curve Name 🛆	Curve Type
Fc=1	Reference
Fc=2	Active
Fc=2-1	ReferenceSubtracted

キーボードの Ctrl キーを押しながら、目的のフローセルをクリックします。連続したフロ ーセルを選択する場合は、マウスのドラッグ操作によっても選択可能です。

特定のセンサーグラムの選択

Cycle: < Overlay>
 「●●の●もしくは●●をクリックし、目的のサイクルを選択し

 \downarrow

ます。

複数のサイクルを同時に選択する場合は、 🔽を使用します。

▼ ▶ ≪	Assay Ste	p Purpose: <0verlay> 💌	🕨 🗹 Cycle: <0	verlay>	
Included	Cycle#	Assay Step Purpose	Sample Name	Conc. 🗢	MW
Yes	1	Startup	Buffer		
Yes	2	Startup	Buffer		
Yes	3	Startup	Buffer		
Yes	9	Sample	Beta2micro	32	11800
Yes	8	Sample	Beta2micro	16	11800
Yes	7	Sample	Beta2micro	8	11800

キーボードの **Ctrl** キーを押しながら、目的のサイクルをクリックします。連続したフロー セルを選択する場合は、マウスのドラッグ操作によっても選択可能です。

 \downarrow

9-3-2. センサーグラムの表示の変更

Sensorgram window 上部のセレクションツールの右端にある を使用します。

色の表示の変更

Tools \rightarrow **Color By** \rightarrow **Sample** e^{2}

サンプル名ごとに、自動的にセンサーグラムの色が変更します。

その他、測定温度ごとやフローセルごとにも色を変更することができます。

レポートポイントの表示

Tools \rightarrow **Report Point** \rightarrow **Id and Marker** $e \neq 0 \forall y \neq 0$

レポートポイントの id が表示されます。

9-3-3. センサーグラムの添加開始時間、ベースライン合わせ

Sensorgram window 上部のセレクションツールの右端にある を使用します。

Tools → **Sensorgram Adjustment**... e 2 y y 2 b z z.

🐴 Adjust Sens	sorgram			×
X-Adjustment –	Off Report Point (time=0) Injection Event (time=0)			~
Y-Adjustment -	Off Report Point (response=0) Injection Event (response=0) Enable Second Y-Adjustment (No Report Point (response=100) Injection Event (response=100)	(× × ×
Blank Subtracti	on Enable Blank Subtraction			~
Help			ОК	Cancel

サンプル添加開始時間合わせ

X-Adjustment v に Report point (time=0)をクリックし、 🔽 で baseline を選択します。

-X-Adjustment	O 0ff		
	 Report Point (time=0) 	baseline	~
[<u>.</u>	O Injection Event (time=0)	baseline binding stability	

ベースラインあわせ

Y-Adjustment も同様に、**Report point** (response=0) をクリックし、 ▼で baseline を選 択します。

Y-Adjustment	O Off	lt	
	 Report Point (response=0) Injection Event (response=0) 	Daseline	~

9-3-4. センサーグラムの不必要部分の削除

削除する範囲を、マウスを右クリックしたままドラッグして選択します。

選択した範囲が削除されます。

9-3-5. センサーグラムの差し引き

差し引きしたいセンサーグラム(ブランク)と、差し引くセンサーグラムを重ね書きしま す。ブランクのセンサーグラムの上にポインターを移動して表示されるサイクル数を確認 します。

Sensorgram window 上部のセレクションツールの右端にある を使用します。

Tools \rightarrow **Sensorgram Adjustment...** $p \neq 0$

Blank Subtraction の Enable Blank Subtraction にチェックを入れ、 🚩 をクリックしてブラ

ブランクのセンサーグラムは直線に変わります。

9-3-6. センサーグラムのノーマライズ

指定した結合量を基準として、結合量の 100 あわせを行うことをノーマライズといいます。 解離速度の比較を行う場合などに使用します。

添加開始およびベースラインのゼロ合わせを実施したセンサーグラムを用いて実施します。

Sensorgram window 上部のセレクションツールの右端にある **Tools** ▼を使用します。

Tools → Sensorgram Adjustment... p > 0 v p = 0

~Y-Adjustment —							
	O Off						
L+	 Report Point (response=0) 	baseline 🔽					
	O Injection Event (response=0)	▼					
	Enable Second Y-Adjustment (No	rmalize)					
	○ Report Point (response=100)	×					
	 Injection Event (response=100) 	Sample 1 stop					

Enable Second Y-Adjustment (Normalize) にチェックを入れます。解離速度定数の比較 を行う場合には、Injection Event (response = 100)を選択して、[▶]をクリックして添加 終了 (Sample 1 stop)を選択します。OK をクリックします。

添加終了時点の結合量を 100 RU として、ノーマライズ後のセンサーグラムが表示されます。

9-4. グラフの編集

Sensorgram window 上のマウスの右クリックメニューを使用します。

スケールの変更

Scale...

Scale	
X Scale V Auto	Y Scale ✓ Auto Logarithmic
Min: -100 Max: 350	Міп: -5 Мак: 30
40	Cancel

通常 Auto が選択されています。スケールを変更する場合は、 VAutoのチェックを外し、各

軸のスケールの最小値(Min:)と最大値(Max:)を入力します。

Scale	
X Scale	Y Scale Auto
Min: -50	Min: -50
Max: 300	Max: 400
	Cancel

OKをクリックします。

凡例の移動と削除

Legend...

Legend	
Position Hidden Left Top Right Bottom	OK Cancel

通常 Right が選択されています。移動する位置を選択します。凡例をグラフに表示しない場合は、Hidden を選択します。OK をクリックします。

グリッドラインの表示

Gridlines...

Gridlines	X
X Axis	OK Cancel
Y Axis	

主軸目盛りに対してグリッドラインを表示させるときは、Major Gridlines にチェックを入れ ます。副目盛りに対してグリッドラインを表示させるときは、Minor Gridlines にチェックを 入れます。

OKをクリックします。

Biacore T200 日本語取扱説明書

9-5. データの移管

データの移管方法には、次の方法があります。 ①画像データファイルとして移管 ②テキスト形式ファイルとして移管 ③エクセル形式ファイルとして移管

画像データファイルして移管

Sensorgram window 上のマウスの右クリックメニューを使用します。

Copy Graph をクリックします。

グラフを画像としてコピーします。続いて Biacore 付属のパソコンにインストールされている Word Pad、Paint などに貼り付け、貼り付けたファイルを保存します。保存したファイル は、画像として別のパソコンに移動させることが可能です。

(例) Word Pad への貼り付け

センサーグラムをテキスト形式ファイルとして移管

Sensorgram window 上のマウスの右クリックメニューを使用します。 Export Curves...をクリックします。

 \downarrow

保存先を指定して保存します(拡張子:txt)。保存したファイルは、他のパソコンの Excel などのグラフ描画機能を持つソフトウェアで再びセンサーグラムを作成することが可能です。

(例)保存した text ファイル

Beta2micro-hish2_X	Beta2micr	ro-high2_Y	RPoint_X	RPoint	Y	Beta2n	nicro-hi <mark>-</mark>
-19 0.558594	-3 (0.0712891	-19 0	.833984	-3	0.0576	172
-18 0.533203	0 0) -18	0.761719	0	0	-18	0.745
-17 0.5625 2	-0.082031	3 -17	0.779297	2	-0.1025	39	-17
-16 0.457031	182 3	332.89 -16	0.740234	182	332.645	-16	0.609
-15 0.417969	185 3	333.021 -15	5 0.712891	185	332.791	-15	0.538
-14 0.411133	187 3	332.999 -14	0.701172	187	332.898	-14	0.501
-13 0.400391	197 3	327.708 -13	0.618164	197	327.761	-13	0.421
-12 0.310547	200 3	325.22 -12	2 0.567383	200	325.211	-12	0.355
-11 0.216797	202 3	323.455 -11	0.496094	202	323.496	-11	0.459
-10 0.198242		-10	0.349609			-10	0.431
-9 0.182617		-9	0.414063			-9	0.332
-8 0.25293	-	-8 0.3	391602		-8	0.4365	23
-7 0.181641		-7	0.267578			-7	0.291
-6 0.143555		-6	0.24707		-6	0.2041	02
-5 0.0888672		-5	0.15332		-5	0.1269	153
-4 0.178711		-4	0.170898			-4	0.122
-3 0.0712891		-3	0.0576172			-3	360.0
-2 0.0488281		-2	0.0605469			-2	-0.03
-1 0.0195313		-1	0		-1	-0.048	8281
0 0	() 0		0	0		
1 -0.0283203		1	-0.051757	8		1	-0.11
2 -0.0820313		2	-0.102539			2	-0.15
3 -0.169922		3	-0.194336			3	-0.13
4 -0.130859		4	-0.303711			4	-0.15
							-
4							• /

解析データを Excel 形式ファイルとして移管

File → Export → Result To Excel...をクリックします。 保存先を指定して保存します (拡張子:xls)。Evaluation Explorer に表示されている解析結果 の数値データなどが保存されます。ただし、センサーグラムのデータは保存されません。 他のパソコンの Excel で解析結果を開くことができます。

(例)保存した xls ファイル

	A	В	C	D	E	F	G	н	I	J	K	L	M	N	0	-
1	Evaluation:	Kinetics /	Affinity													
2	Name:	Beta2micri)													
3																
4	Sample:	Beta2micro	o													
5	Temperatu	25														
6	Curve:	Fc=2-1														
7																
8	Model:	1:1 Binding														
9	Description	1:														
10																
11	Curve	ka (1/Ms)	kd (1/s)	KD (M)	Rmax (RU)	Conc (M)	tc	Flow (ul/m	kt (RU/Ms)	RI (RU)	Chi² (RU²)					
12		1147601	0.002635	2.3E-09	24.50454		1.17E+09				0.136664					
13	Cycle: 5 2	nM				2E-09		30	3.63E+09	0.178485						
14	Cycle: 6 4	nM				4E-09		30	3.63E+09	0.31193						
15	Cycle: 7 8	nM				8E-09		30	3.63E+09	0.113137						
16	Cycle: 8 1	6 n M				1.6E-08		30	3.63E+09	0.242235						
17	Cycle: 9 3	2 n M				3.2E-08		30	3.63E+09	0.992655						
18	Cycle: 10	8 nM				8E-09		30	3.63E+09	0.212286					-	
19																
20																
21																
20																
20																
24																
26																
27																
28																
29																
30																
31																
32																
33																
34																
35																
36																
14 4	► ►I \File	Properties	Baseline	Sample / Bir	nding level /	Binding sta	bility / Bindi	ng to refere	ence <u>λ Beta</u> á	2micro/ 4						

9-6. データの保存

File \rightarrow Save As... $e \neq 0$ $\forall \neq 0$

Save As					? 🛛
Save in:	🚞 Bia Users		C)	ø 🖻	.
My Recent Documents	Exercise Methods and Te	emplates			
Desktop					
My Documents					
My Computer					
	File name:	KineticsAffinity - 1.1 interactio	n.bme	~	Save
My Network	Save as type:	Biacore T100 Evaluation File:	s (*.bme)	~	Cancel

Save in:に保存先(C:/Bia Users/個人名など)を選択し、**File name:**にファイル名を入力し、 **Save** をクリックします。

補足 9-2. ファイルのアイコン						
ファイル	ルの種類によってアイコンが異なります。					
1	Biacore T200 Control ソフトウェアで保存したファイル					
	Biacore T200 Evaluation ソフトウェアで保存したファイル					
211 HL 11	テキスト形式で保存したデータファイル					

A	
Add Report point	21
After run	
Aim for immobilized level	
Analysis temperature	
Application wizards	14
Assay step preparations	
Assay Steps	
Automatic Positioning	63, 105, 149
В	
Base Line	51
Baseline	
Batch mode	
Biacore Maintenance Kit	
Binding Analysis	
Binding level	
Binding to reference	
Bivalent Analyte	
Blank immobilization	
Buffer settings	
Bulk Effect	45
C	
Capture	
Carry Over	
Chi ²	
Concentration	
Concentration Analysis	
Concentration unit	
Concentrations per cycle	
Connect to cycle type	
Contact time	
Copy Graph	
crude	45

索引

Current Fits	
Custom Methods	
Cycle Run List	
Cycle Types	
D	
Data Collection rate	
Desorb	
Desorb and Sanitize	
Detection	
Dissociation time	
DMSO	
Dock Chip	
E	
EDC	
Eject Rack	
Eject Rack Tray	
Empty Buffer Tubing	
End manual run	
End Run	
Enhancement	
Evaluation Variables	
Export Curves	
Extra wash after injection with	
F	
Flow path	
Flow rate	
Fraction	
G	
General	
General Settings	
н	
Heterogeneous Analyte	
Heterogeneous Ligand	
High performance	
High viscosity solution	

Biacore T200 日本語取扱説明書

I

IfThen	
Immobilization pH Scouting	
Immobilization Results	
Immunogenicity	
Inject command	
InjectAndRecover	
к	
k _a	
k _d	
K _D	45, 54, 55, 56, 75, 91, 92, 93, 118
Keyword Table	
Kinetics Summary	
Kinetics/Affinity	
L	
Low Sample consumption	
Μ	
Manual run	
Method Variables	
Methods	
Methods and Templates	
Mix with	
Multiple Rmax	
Ν	
New chip	
NHS	
Normalize	
Number of cycles	
Number of replicates	
0	
On-Off Rate Map	
Overview	
P	
Predip	
Prime	
Print	
Purpose	

Q

Quality Assessment	
Quality Control	
R	
Rack tray	
Reagent rack, Type 1	
Reagent rack, Type 2	
Recurrence	
Reference line	
Reference Line	
Regeneration	
Regeneration Scouting	
Remove Selection	
Repeat assay step within	
Report	
Report point	
Req	
Residuals	
Response Bound	
Response Final	
Result To Excel	
Reuse chip	
RI	73, 75, 76, 77, 79, 116, 118, 119, 120, 122
R _{max}	
Run	
S	
Sample and reagent rack	
Sample compartment temperature	
Sample solution	
SE	
Sensor Chip Maintenance	
Sensorgram Adjustment	
Show All Curves	
Show average blank(s)	
Show Curves of Same Type	

Show Only Current Curve	
Single cycle kinetics	
Single mode	
Single-cycle Kinetics	
Solvent correction	
Specify contact time and flow rate	
Stabilization period	
Standard error	
Standby flow	
Startup	
Steady State Affinity	
Stop Run	
Surface Performance	
Surface Preparation	
System Check	
т	
Target level	
Temperature	
Thermodynamics	
Tile Horizontally	
Tile Vertically	
Two state Reaction	
Туре	
Types	
U	
U-value	
v	
Variable Settings	
Verification	
Verifivcation	
Vial/well position	
w	
Wash Buffer Tubing	
Wash solution	

あ

アイコンの説明	17
アナライトの回収	53, 138
アフィニティー	54
アフィニティーが	
アミンカップリングキット	25
アミンカップリング法	23
アルデヒドカップリング法	23
一時停止	17
印刷	
え.	
エクセル形式ファイル	
エタノールアミン	25
か	
カーブフィッティング	
カイネティクス解析	54
解離速度定数	54
解離定数	24, 45, 53, 54
化学耐性	
画像データファイル	
き	
キャリーオーバー	
緊急停止	
結合速度定数	54
2	
固定化	23
固定化量	24
č	
サーフェスチオールカップリング法	23
再解析	
サイクルの切り替え	17
再生条件	45, 46, 52, 59
再生溶液	
最大結合量	24

残差プロット	
サンプル位置	
サンプル情報	
L	
シグナルの校正	
システムチェック	
至適アナライト濃度	
自動判断機能コマンド	
試料必要量	15
シングルサイクル法	
र्च	
スクリーニング	24
スタンバイ	
ステータスマーク	
せ	
センサーグラムの編集	
センサーチップの固定化履歴	7
センサーチップの挿入	
センサーチップの保存	
2	
測定の終了	
t.	
ダミーラン	
7	
データの移管	
テキスト形式ファイル	
電源の落とし方	
\mathcal{O}	
濃度測定	
ノーマライズ	
は	
バイアル	
バッチ解析	
反応速度定数	45
反応モデル	71 72 114
U U	······································

索引

非線形最小二乗法	55
標準誤差	
<u>ی</u>	
ファイルのアイコン	
フィッティング	
プーリング機能	
プレコンセントレーション効果	
^	
平衡値解析	
ŧ	
マストランスポートリミテーション	
マニュアル測定	15
マルチサイクル法	
ø	
メソッド	
メソッドビルダー	
メンテナンス	
ф	
有機溶媒	
£	
溶液効果	
溶媒補正	
Ь	
ラックトレイ	
ラックの取り出し	
ランニング緩衝液の交換	
ランニング緩衝液の種類	
ı)	
リガンド希釈液	
リガンドチオールカップリング法	23
リファレンスセル	
リファレンスライン	
リファレンスラインウィンドウ	51
流速の変更	
流路の切り替え	
h	

■総合お問合せ窓口

TEL: 03-5331-9336

● 機器アフターサービス (営業日の 9:00~17:30、音声案内に従い①を選択) FAX:03-5331-9324(常時受付) 製品技術情報に関して (バイオダイレクトライン、営業日の 9:00~12:00、13:00~17:30) 音声案内に従い②を選択後、対象の製品別の番号を押してください。 ●:ÄKTA、クロマトグラフィー関連製品 2:ビアコア関連製品 8:電気泳動関連製品、画像解析装置 ④: IN Cell Analyzer、ワットマン製品、その他製品 e-mail:Tech-JP@cytiva.com(常時受付) • 納期/在庫お問合せ

(営業日の 9:00~12:00、13:00~17:30、音声案内に従い③を選択)

注)お問合せに際してお客さまよりいただいた情報は、お客さまへの回答、弊社サービスの向上、 弊社からのご連絡のために利用させていただく場合があります。 注) アナログ回線等で番号選択ができない場合はそのままお待ちください。 オペレーターにつな がります。

www.cytivalifesciences.co.jp

論文に掲載いただく際の名称・所在地 Cytiva Tokyo, Japan

ジャパン株式会社

〒169-0073

東京都新宿区百人町 3-25-1 サンケンビルヂン グ

お問合せ:バイオダイレクトライン TEL:03-5331-9336 e-mail : Tech-JP@cytiva.com

グローバルライフサイエンステクノロジーズ 掲載されている内容は 2019 年4月現在のもので予 告なく変更される場合がありますのであらかじめ ご了承ください。掲載されている社名や製品名は、 各社の商標または登録商標です。お問い合わせに 際してお客さまよりいただいた情報は、お客さま への回答、弊社サービスの向上、弊社からのご連 絡のために利用させていただく場合があります。